TABLE OF CONTENTS

1 How to Request Technical Support and Assistance .. 1
2 Key Contacts .. 2
3 Installing SmartSDR for Windows on your PC ... 3
 3.1 Recommendations and Requirements ... 3
 3.2 Obtaining SmartSDR for Windows Software ... 3
 3.3 Minimum Windows and .NET Requirements ... 3
 3.4 Installing the Software ... 4
4 multiFLEX .. 9
5 Connecting to a Radio... 12
6 How to Update the Radio Firmware .. 14
 6.1 Downgrading the Firmware .. 14
7 Licensing the Radio for SmartSDR .. 16
8 Initial Setup of SmartSDR CAT and DAX ... 18
 8.1 Initial SmartSDR CAT setup .. 18
 8.2 Initial DAX Setup .. 21
9 SmartLink ... 23
 9.1 SmartLink Overview .. 23
 9.2 SmartLink Setup ... 24
 9.2.1 Create a SmartLink Account .. 24
 9.2.2 Register the Radio in SmartLink ... 26
 9.2.3 Test the Radio in SmartLink .. 28
 9.3 SmartSDR CAT and DAX in SmartLink .. 28
 9.4 Using SmartLink .. 29
10 How to Determine the IP Address of the Radio and the Software Version Numbers 32
11 SmartSDR Overview ... 33
 11.1 Theory of Operation .. 33
 11.2 Key SmartSDR Components ... 33
 11.2.1 Spectral Capture Unit (SCU) ... 33
 11.2.2 Slice Receiver ... 33
 11.2.3 Panadapter ... 34
 11.2.4 Waterfall ... 34
 11.2.5 Panafall ... 35
 11.3 Dynamic Filter Depth ... 35
12 How to Operate a Slice Receiver .. 37
12.1 How to Create and Destroy a Slice Receiver .. 37
12.2 How to Tune a Slice Receiver ... 38
12.3 Making a Slice Receiver Active ... 39
12.4 How to Change the Demodulation Mode ... 39
12.5 How to Adjust the Speaker and Headphone Volume of a Slice Receiver 40
12.6 How to Change the RX filter of a Slice Receiver 40
12.7 Predefined receive filters ... 41
12.8 Recording and Playback of Slice Receiver Audio 41
13 How to Operate the Panadapter / Waterfall ... 43
 13.1 How to Create / Destroy a Panadapter / Waterfall 43
 13.2 How to Change the Panadapter Frequency (Tune) 43
 13.3 How to Zoom a Panadapter .. 43
 13.4 How to Change the Signal Magnitude Scale of a Panadapter 44
 13.5 Adjusting the Panadapter and Waterfall Controls 45
 13.6 How to Change the Size and Position of Multiple Panadapters 47
14 Noise Mitigation in SmartSDR ... 49
15 How to Configure Noise Mitigation .. 50
 15.1 AGC Threshold .. 50
 15.2 DSP Noise Mitigation Features ... 51
 15.3 Wideband Noise Blanker (WNB) .. 52
 15.4 Slice Specific Noise Blanker (NB) ... 52
 15.5 Noise Reduction (NR) .. 53
16 How to Use Tracking Notch Filters (TNF) ... 54
 16.1 Tracking Notch Filter Theory ... 54
 16.2 Creating and Adjusting a Tracking Notch Filter 54
 16.3 Turning All Tracking Notch Filters On or Off 55
 16.4 Automatic Notch Filter (ANF) ... 56
17 Using the FlexControl Interface .. 57
 17.1 Customizing the FlexControl Interface ... 57
 17.2 Operating the FlexControl .. 58
 17.3 Troubleshooting Issues with the FlexControl 59
18 How to Use Profiles .. 60
 18.1 MIC Profiles ... 60
 18.2 Transmit Profiles .. 61
 18.3 Global Profiles .. 62
 18.4 Saving and Deleting Profiles ... 63
18.5 Loading Profiles

18.6 Default Profiles

18.7 Comparing Profiles and Persistence

19 Importing and Exporting Radio Settings

20 TX Band Settings

21 multiflex dashboard

How to use PC Audio

21.1 Playing Slice Audio Using the Default Playback Device

21.2 Transmitting Using the Default Recording Device

21.3 Configuring the Default Windows Sound Devices

21.4 PTT Override when Operating LAN Remote

21.5 Operating CW when Using PC Audio

21.6 Monitoring Remote Audio and Network Performance

21.6.1 Network Health Indicator

21.6.2 Network Diagnostics

22 How To Operate multiFLEX

22.1 Shared Resources

22.1.1 Single Transmitter

22.1.2 Available SCUs

22.1.3 Total Available Slices and Panadapters

22.1.4 Hardware PTT Inputs – Introducing Local PTT

23 How to Operate CW Mode

23.1 How to Operate CW in Split Mode

23.2 CW Transmitting

23.3 Using the Built-in Keyer

23.4 How to Operate QRQ (high speed) CW with QSK

23.5 How to Connect an External Keyer using the FSK/Key Input on the Accessory Connector

24 How to Operate Single Sideband mode (SSB)

24.1 How to Select the SSB RX Filter Bandwidth

24.2 How to Operate SSB in Split Mode

24.3 How to Configure the Audio Controls for Phone Modes

24.3.1 Setting the Transmit Filter Bandwidth

24.3.2 Operating the Speech Processor

24.3.3 How to Configure the Equalizer (EQ)

24.3.4 How to Configure VOX

Copyright 2019 FlexRadio Systems. All Rights Reserved.
Table of Contents

24.3.5 Monitor Mode Operation ... 89
24.3.6 How to Configure the Downward Expander (DEXP) 90
24.4 Monitoring your Transmitted Audio .. 90
24.5 Recommended Audio Adjustment Steps for Phone Modes 91

25 How to Operate AM and SAM Modes .. 92

26 How to Operate FM Mode .. 93
26.1 Operating FM Repeaters .. 93
26.2 Operating FM Repeaters (EU Only) ... 94
26.3 Memory Channels ... 94

27 How to Operate Diversity Reception (FLEX-6600/M and FLEX-6700 Only) .. 96

28 How to Operate the ATU ... 98
28.1 Modes of Operation ... 98
28.1.1 Manual Mode .. 99
28.1.2 Memory Mode ... 99

29 How to Configure Antennas ... 101
29.1 Getting Started .. 101
29.2 Selecting the Receive Antenna for a Panadapter Without Slice Receivers .. 101
29.3 Using the Panadapter ANT Pop-Out Menu ... 101
29.4 Selecting the Transmit Antenna for a Slice Receiver 103
29.5 Antenna Options for PIN Diode QSK Operation 103
29.6 Using a Common Receive Antenna with Separate Transmit Antennas 103
29.7 Using Two Transceive Antennas on the FLEX-6600/M and FLEX-6700 104
29.8 Using a Dedicated Receive Antenna ... 104
29.9 Receive-only Antenna Operation .. 105
29.10 Antenna Selection for Transverter Operation 105
29.11 Using the Receive RF Gain/Preamplifiers .. 105
29.12 Setting the RF Gain/Preamplifiers ... 106
29.13 Antenna Configuration Basic Terms and Rules 107

30 Displaying Spots in SmartSDR for Windows 109

31 How to Configure Transverters .. 113
31.1 Using a Transverter ... 115
31.2 Multiple Copies of a Band .. 116
31.3 Transverter Power Settings .. 117
31.4 Transmitting on a Transverter .. 117
31.5 Weak Signal Considerations ... 118

32 Using the FlexRadio Power Genius XL Amplifier 119
<table>
<thead>
<tr>
<th>Page</th>
<th>Section Title</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>How to Connect an External Amplifier</td>
<td>120</td>
</tr>
<tr>
<td>34</td>
<td>USB Cables</td>
<td>121</td>
</tr>
<tr>
<td>34.1</td>
<td>USB Cables Overview</td>
<td>121</td>
</tr>
<tr>
<td>34.2</td>
<td>Cable management</td>
<td>122</td>
</tr>
<tr>
<td>34.2.1</td>
<td>CAT Cables</td>
<td>123</td>
</tr>
<tr>
<td>34.2.2</td>
<td>BIT Cables</td>
<td>125</td>
</tr>
<tr>
<td>34.2.3</td>
<td>BCD Cables</td>
<td>126</td>
</tr>
<tr>
<td>34.2.4</td>
<td>LDPA Cables</td>
<td>128</td>
</tr>
<tr>
<td>35</td>
<td>How to Operate in Digital Modes</td>
<td>129</td>
</tr>
<tr>
<td>35.1</td>
<td>Using DAX for Operating Digital Modes</td>
<td>129</td>
</tr>
<tr>
<td>35.1.1</td>
<td>Connecting to the FLEX-6000 via DAX</td>
<td>129</td>
</tr>
<tr>
<td>35.1.2</td>
<td>SmartSDR for Windows Configuration with DAX Audio</td>
<td>129</td>
</tr>
<tr>
<td>35.1.3</td>
<td>DAX Control Panel Setup</td>
<td>130</td>
</tr>
<tr>
<td>35.1.4</td>
<td>DAX Channels to Sound Device Mappings</td>
<td>133</td>
</tr>
<tr>
<td>35.1.5</td>
<td>DAX TX Channel Switching</td>
<td>133</td>
</tr>
<tr>
<td>35.1.6</td>
<td>DAX TX Channel and Microphone Interaction</td>
<td>134</td>
</tr>
<tr>
<td>35.1.7</td>
<td>DAXIQ Configuration</td>
<td>134</td>
</tr>
<tr>
<td>35.2</td>
<td>Enabling the SmartSDR CAT interface</td>
<td>136</td>
</tr>
<tr>
<td>35.3</td>
<td>Configuring a PTT (keying) interface</td>
<td>137</td>
</tr>
<tr>
<td>35.3.1</td>
<td>PTT Override when Operating Digital Modes</td>
<td>137</td>
</tr>
<tr>
<td>35.4</td>
<td>Configuring Third-Party Digital Mode Programs</td>
<td>137</td>
</tr>
<tr>
<td>35.4.1</td>
<td>Setting upFldigi</td>
<td>137</td>
</tr>
<tr>
<td>35.5</td>
<td>RTTY Mode</td>
<td>141</td>
</tr>
<tr>
<td>35.6</td>
<td>DIGI Mode Audio Offsets</td>
<td>142</td>
</tr>
<tr>
<td>36</td>
<td>How to Export Transmitted Audio</td>
<td>143</td>
</tr>
<tr>
<td>37</td>
<td>How to Operate Using Waveforms</td>
<td>144</td>
</tr>
<tr>
<td>37.1</td>
<td>What is a Waveform Module?</td>
<td>144</td>
</tr>
<tr>
<td>37.2</td>
<td>Installing and Removing a Waveform Module</td>
<td>144</td>
</tr>
<tr>
<td>37.3</td>
<td>Operating a Waveform module</td>
<td>146</td>
</tr>
<tr>
<td>38</td>
<td>How to Operate in Full Duplex (FDX) Mode</td>
<td>147</td>
</tr>
<tr>
<td>38.1</td>
<td>FDX Requirements</td>
<td>147</td>
</tr>
<tr>
<td>38.2</td>
<td>FDX Applications</td>
<td>147</td>
</tr>
<tr>
<td>38.3</td>
<td>FDX Capabilities by Radio Model</td>
<td>148</td>
</tr>
<tr>
<td>38.3.1</td>
<td>FLEX-6600M / FLEX-6700 SO2R Operation</td>
<td>148</td>
</tr>
<tr>
<td>38.3.2</td>
<td>FLEX-6300 and FLEX-6500 Full Duplex</td>
<td>149</td>
</tr>
<tr>
<td>38.4</td>
<td>SCU Overload Fundamentals</td>
<td>149</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>39.4.1</td>
<td>Preselection Band Filter Block</td>
<td>150</td>
</tr>
<tr>
<td>39.4.2</td>
<td>Preamplifier / Attenuator Block</td>
<td>150</td>
</tr>
<tr>
<td>39.4.3</td>
<td>High-Performance Analog to Digital Converter Block (ADC)</td>
<td>151</td>
</tr>
<tr>
<td>39.5</td>
<td>Full Duplex Antenna Isolation Requirements</td>
<td>152</td>
</tr>
<tr>
<td>39</td>
<td>Radio Setup</td>
<td>153</td>
</tr>
<tr>
<td>39.1</td>
<td>Introduction</td>
<td>153</td>
</tr>
<tr>
<td>39.2</td>
<td>Configuring a Radio</td>
<td>153</td>
</tr>
<tr>
<td>39.3</td>
<td>Radio Tab</td>
<td>153</td>
</tr>
<tr>
<td>39.4</td>
<td>Network Tab</td>
<td>155</td>
</tr>
<tr>
<td>39.5</td>
<td>GPS Tab</td>
<td>156</td>
</tr>
<tr>
<td>39.6</td>
<td>TX Tab</td>
<td>157</td>
</tr>
<tr>
<td>39.7</td>
<td>Phone/CW Tab</td>
<td>159</td>
</tr>
<tr>
<td>39.8</td>
<td>RX Tab</td>
<td>160</td>
</tr>
<tr>
<td>39.9</td>
<td>Filters Tab</td>
<td>163</td>
</tr>
<tr>
<td>39.10</td>
<td>XVTR Tab</td>
<td>164</td>
</tr>
<tr>
<td>40</td>
<td>Restoring to Factory Defaults</td>
<td>165</td>
</tr>
<tr>
<td>41</td>
<td>Main Window</td>
<td>166</td>
</tr>
<tr>
<td>41.1</td>
<td>Introduction</td>
<td>166</td>
</tr>
<tr>
<td>41.2</td>
<td>Upper Menu Bar</td>
<td>166</td>
</tr>
<tr>
<td>41.2.1</td>
<td>Menus</td>
<td>166</td>
</tr>
<tr>
<td>41.2.2</td>
<td>Volume Controls</td>
<td>167</td>
</tr>
<tr>
<td>41.3</td>
<td>Lower Menu Bar</td>
<td>167</td>
</tr>
<tr>
<td>41.3.1</td>
<td>Application Launcher</td>
<td>167</td>
</tr>
<tr>
<td>41.3.2</td>
<td>GPS Indicator</td>
<td>168</td>
</tr>
<tr>
<td>41.3.3</td>
<td>Transmit Indicator</td>
<td>169</td>
</tr>
<tr>
<td>41.3.4</td>
<td>Date/Time Indicator</td>
<td>169</td>
</tr>
<tr>
<td>41.4</td>
<td>Organization and Arrangement</td>
<td>170</td>
</tr>
<tr>
<td>41.5</td>
<td>Panafall (Panadapter/Waterfall)</td>
<td>170</td>
</tr>
<tr>
<td>41.5.1</td>
<td>Panadapter Definition</td>
<td>170</td>
</tr>
<tr>
<td>41.5.2</td>
<td>Waterfall Definition</td>
<td>171</td>
</tr>
<tr>
<td>41.5.3</td>
<td>Panadapter Menu</td>
<td>172</td>
</tr>
<tr>
<td>41.5.4</td>
<td>Horizontal Zoom</td>
<td>174</td>
</tr>
<tr>
<td>41.5.5</td>
<td>Vertical Zoom</td>
<td>176</td>
</tr>
<tr>
<td>41.5.6</td>
<td>Panning Method</td>
<td>176</td>
</tr>
<tr>
<td>41.5.7</td>
<td>Waterfall Time Machine</td>
<td>177</td>
</tr>
<tr>
<td>41.5.8</td>
<td>Close/Maximize/Rearrange</td>
<td>177</td>
</tr>
</tbody>
</table>
41.6 Slice Receiver ... 179
 41.6.1 Definition .. 179
 41.6.2 Carrier Frequency .. 179
 41.6.3 Receive Filter .. 179
 41.6.4 Filter Control Widget ... 180
 41.6.5 Slice Flag .. 181
 41.6.6 Slice Menus .. 183
41.7 SmartSDR Radio Control Panel ... 185
 41.7.1 RF Power / ATU Control Panel .. 186
 41.7.2 CW Transmit Control Panel .. 187
 41.7.3 Phone Transmit Control Panel ... 188
 41.7.4 Voice Mode Panel ... 189
 41.7.5 Active Receiver Panel .. 190
 41.7.6 Equalizer Panel ... 190
 41.7.7 Power Genius XL Panel ... 191
41.8 SmartSDR CWX panel .. 192
 41.8.1 CWX Setup Panel .. 193
42 Error and Status Messages ... 194
 42.1 Thermal Over Temperature .. 194
 42.2 Reverse RF Power Detected ... 194
 42.3 Import Config Failed .. 194
 42.4 Interlock is Preventing Transmission .. 194
 42.5 Transmit Slice Has Not Been Selected .. 194
 42.6 Max Power Set Too Low For ATU ... 194
43 Troubleshooting Tips ... 195
 43.1 FLEX-6000 Does Not Show Up in the Radio Chooser 195
 43.1.1 Physical Layer Issues ... 195
 43.1.2 Firewalls Preventing Network Access from the FLEX-6000 195
 43.1.3 MAC Address Filtering ... 196
 43.2 DAX Not Behaving as Expected .. 196
 43.3 Radio Will Not BOOT, or SmartSDR-Win will not Completely Load 196
 43.4 FLEX-6000 Fails to Upgrade to a new Version of Firmware 197
 43.5 FLEX-6000 Not Performing Well after an Upgrade to a new Version of Firmware 197
 43.6 RF Spectrum Not Displayed Properly after Selecting a FLEX-6000 or Audio Stuttering 197
 43.7 Amber front panel light stuck on .. 198
43.8 I purchased a license, but it doesn’t show up in the radio. .. 198
43.9 SmartLink Troubleshooting .. 199
 43.9.1 Radio not shown in the radio chooser .. 199
 43.9.2 My radio shows up in the list, but when I try to connect, it doesn’t work........ 199
 43.9.3 Running the Network Settings Test, I do not get a green response. 199
 43.9.4 My router doesn’t support UPnP. How can I setup my radio to reliably connect to remote clients? ... 200
 43.9.5 When I use public Wi-Fi, sometimes my Panadapter hangs or my audio has gaps in it. How do I fix this? ... 200
44 Legal Notice ... 201
45 Copyright Information ... 203
 45.1 User Guide Copyright .. 203
 45.2 Software Copyrights .. 203
46 Software Licence Agreements .. 204
 46.1 FlexRadio Software License .. 204
 46.2 GPL Information ... 208
1 HOW TO REQUEST TECHNICAL SUPPORT AND ASSISTANCE

If you encounter any issues installing or operating SmartSDR for Windows with a FlexRadio Systems Signature Series software defined radio, please use our on-line Community (https://community.flexradio.com/) to find information about SmartSDR and the FLEX-6000 radios. If you need assistance using the Community, please refer to the community topic “How To Use The FlexRadio Systems Support Community”.

If you are unable to find an existing answer to your issue on the Community, please contact FlexRadio Systems technical support by opening a Helpdesk support ticket on-line at https://helpdesk.flexradio.com/

For details on how to submit a Helpdesk support ticket, please refer to the following URL: https://helpdesk.flexradio.com/hc/en-us/articles/202118688-How-to-Submit-a-Request-for-Technical-Support.

Hours of Operation: Our Technical Support engineers are available Monday-Friday from 9:00am-5:30pm Central Time. If you contact Support after business hours, on a holiday or weekend, we will respond to your request for assistance during regular business hours in the order the tickets were received.
2 KEY CONTACTS

FlexRadio Systems - U.S.A
4616 W. Howard Lane, Suite 1-150
Austin, TX 78728
U.S.A.
Phone: 512-535-4713
Fax: 512-233-5143
Email: sales@flexradio.com
HelpDesk: https://helpdesk.flexradio.com
User Support: https://community.flexradio.com

Outside of the USA
Please contact your local distributor. See www.flexradio.com/distributors.
3 INSTALLING SMARTSDR FOR WINDOWS ON YOUR PC

The SmartSDR for Windows application is the software used to interface with the FLEX-6000 radio hardware for viewing RF spectrum and controlling the radio. It must be installed before you can start using your FLEX-6000 with a Windows PC.

3.1 RECOMMENDATIONS AND REQUIREMENTS

The minimum required CPU for SmartSDR is an Intel i3 2100T or an AMD Athlon Phenom II or greater. Lesser processors may not perform adequately when displaying multiple or full screen spectrum displays. However, for the optimal user experience, as most users run multiple applications along with SmartSDR for Windows such as loggers and digital mode programs, a quad-core CPU or greater is highly recommended.

3.2 OBTAINING SMARTSDR FOR WINDOWS SOFTWARE

SmartSDR for Windows software is obtained by downloading the installer from the FlexRadio website:

https://www.flexradio.com/ssdr-for-windows/

Step through the offered list of software to find the latest version (the version with the largest version number), then click on it to start the download.

3.3 MINIMUM WINDOWS AND .NET REQUIREMENTS

SmartSDR is a Windows .NET Framework application designed to operate on Windows 7, Windows 8.x and Windows 10. The .NET Framework 4.0 is required.

The minimum version of Windows supported by SmartSDR v1.2.0+ is Windows 7. The SmartSDR Installer will automatically detect your Windows version and will notify you if it does not meet the minimum operating system requirements.

If you need to install .NET Framework 4.0, the SmartSDR for Windows installer will attempt to download the necessary software from the Internet. Alternately, you can download it directly from Microsoft using this web link BEFORE installing SmartSDR for Windows.

Please run Windows Update after installing .NET Framework 4.0 to get all the required patches and security updates.
3.4 INSTALLING THE SOFTWARE

Double click the SmartSDR for Windows installer (for instance, SmartSDR_v3.0.23_Installer.exe) to begin the software installation process. You may see a Security Warning as shown in the images below.

Click Run to continue.

The SmartSDR for Windows End User’s License Agreement screen is displayed as shown below.

To accept the license agreement, click on the “I accept the agreement” radio button and then click NEXT.

The Select Destination Location screen is displayed as shown below. It is recommended that you use the default installation location, as it will use the Windows recommended location for the application files. You may however choose an alternate location.
Once you have decided on the installation location for *SmartSDR for Windows*, click **NEXT** to continue.

The *Select Components* screen is displayed as shown below; additional components may be displayed. The DAX and SmartSDR CAT applications are optional components which are installed by default. If the DAX application files are installed (DAX sound drivers), the installer will prompt to reboot the system at the end of the installation.

Click **NEXT** to continue.
The *Select Additional Tasks* screen is displayed as shown below. It is recommended that you leave the “Create a desktop icon” option checked to provide a convenient way of starting *SmartSDR for Windows* from your Windows Desktop.

![Select Additional Tasks window](image)

Click **NEXT** to continue.

The *Ready to Install* screen is displayed as shown below.

![Ready to Install window](image)

Click **INSTALL** to continue.

The *Installing* screen will be displayed showing the files being loaded.
After the application files have been installed, additional drivers may be installed.

After a few moments, the Completing the SmartSDR Setup Wizard screen will be displayed as shown below. It is highly recommended that you review the SmartSDR for Windows Release Notes as they contain important information regarding the features and operation for this specific release of SmartSDR for Windows. Check the “View the Release Notes (requires a PDF reader)” option to display the SmartSDR for Windows Release Notes after SmartSDR installer has completed the software install.

For a complete listing of all changes in SmartSDR, check the “View the changelog” option.

If you want to start the SmartSDR for Windows application after the SmartSDR installer has completed, leave the “Launch SmartSDR” option checked.

Click FINISH when you have made your selections.
Note: If hardware or virtual hardware drivers were loaded as part of the installation process, the screen shown above will not be displayed. You will be prompted to reboot your computer as shown in the image below to ensure that the newly installed drivers have been properly installed and initialized. If prompted, reboot your PC before connecting to a Signature Series radio.
multifLEX allows more than one operating position for each radio. In SmartSDR v3.0+, up to two operating positions may connect to a single radio. The operators may be in the same vicinity, or they may be accessing the radio via SmartLink from anywhere in the world (with internet access). In either case, the same familiar easy-to-use interface is used to drive the radio. Each operating position is considered a Station and can have its own independent Slices, Panadapters, transmit settings and active profiles. This allows the sharing of a radio with two users at the same time as if they each had their own radio although there can only be one active transmitter at a time and receive resources must be shared.

multifLEX introduces several new paradigms to the FlexRadio ecosystem that each need their own definitions. These definitions are given assuming a single radio with two operators connected to the same radio at the same time.

Station and Station Name: The Station is the main program being used to operate the radio. This can include Maestro, SmartSDR for iOS, SmartSDR for Windows, and other programs that display panadapter and waterfall data. Each of these programs is considered a Station and is assigned a Station Name which can be changed by the user. This Station Name is then used in DAX, CAT and other third-party programs to track slices, panadapters, streams and other information that is unique to a Station. Each Station can have its own TX Slice and different TX/Mic profiles loaded independent from other Stations. It can be thought of as an operating position.

1 Subject to resource availability based on model (e.g. FLEX-6700 has 8 Slices and Panadapters, FLEX-6600/FLEX-6500 has 4 each, and the FLEX-6400 and FLEX-6300 have 2 each).
The Station Name may be changed by simply clicking within the text area and typing over the name with the desired Station Name. Make sure to press Enter when finished for the name change to take effect.

Station Binding: Another important concept is the concept of binding a program to a particular Station. This is especially important in CAT and DAX so that the CAT ports and DAX streams follow the correct Slices (those associated with the selected Station). Binding to a station is done by selecting a Station from the Station selection dropdown in CAT/DAX which is directly below the radio selection image. Once bound to the station, the program will then track the Slices and Panadapters of that station. You can switch binding at any time if you begin operating from another station.
Local PTT: Local PTT is assigned to a single Station. Since there can be multiple TX slices, the radio must know where to transmit whenever a physical input to the radio (RCA/ACC PTT, CW Key, Mic PTT) is pressed. The Local PTT is how the radio decides where to transmit whenever any of these physical inputs are pressed. For example.

Station 1 is on 20m. Station 2 is on 40m. A footswitch is plugged into the RCA PTT of the radio.

Station 1 is the Local PTT Station. If the footswitch (hardware PTT) is pressed the radio will transmit on 20M.

If Station 2 presses the MOX button (non-hardware PTT), then the radio will transmit on 40M.

To set the Local PTT, use the multiFLEX Dashboard as seen below (see section 21).

Because there is only a single transmitter in the radio, to make it easier to know when the transmitter is in use, we have adapted the TX indicator in the lower right corner of the display so that you can tell when the radio is in transmit by another Station (and which Station it is).

From left to right, the icon shows the radio in RX, the radio in transmit by your station, and the radio in transmit by another station. Hovering over the last icon will show which Station is making the transmission as shown below.
5 CONNECTING TO A RADIO

When SmartSDR starts, a dialog box is displayed showing any radios found in your local network. SmartSDR locates these radios using a network broadcast protocol that is limited to the local subnet of your network. See section 9, SmartLink for more information on using SmartLink. If your radio is turned on and is connected to your local network, it should appear in the dialog as shown below:

To start SmartSDR, double click the radio in the Radios area of the dialog box or click the radio once and then press the CONNECT button that appears at the bottom of the screen. “Available” indicates that you may connect to the radio. Note that a radio that is “Available” may still have other user(s) already connected. The “Available” indicator just means that there is an open slot that will allow an additional connection.

IP address, radio serial number and other Information for each radio shown in the chooser can be obtained by hovering the mouse cursor over a radio. Right clicking on a radio opens a menu allowing you to copy the information to the system clipboard.

The Settings option in the lower right allows for Auto Connect options. By default, the On Startup, Auto Connect Last Radio option is enabled. This means that if the last radio used is available, doesn't require an update, etc., the Radio selection screen will be skipped and the first screen you will see after launching SmartSDR is the Main Window with Panadapters, Waterfalls, etc. The Auto Connect SmartLink option will perform a similar Auto Connect logic if the last radio in use was connected to via SmartLink.
If all of the available multiFLEX slots are in use, you will see “In Use” and the IP address or computer name that is using the radio:

To connect to a radio that has no available multiFLEX slots, select the radio by clicking on it. A Disconnect button will appear. Click this button to open a window to select which Station to disconnect to make a slot available which can be used to connect a Station.

Select the Station to be disconnected and then click the Disconnect Station button. The radio will then be available for use.
6 HOW TO UPDATE THE RADIO FIRMWARE

In the event the installed radio firmware version is not compatible with the active version of SmartSDR, a firmware update will be required. You will notice that there is a yellow indicator followed by the text “Update” in the box where your radio is listed. You will also notice text requiring you to update your radio before you can proceed. To resolve this discrepancy, click . If the version of the firmware that is being installed is newer than the installed version, the update process will begin.

Once the process has started you will see a progress bar showing the approximate completion status. Upon completion of the update you will see appear next to the radio in the list box. Firmware updates usually complete in a few minutes. If the progress bar goes all the way to the right and stops, and the update does not complete within a few minutes, restart the radio and SmartSDR and try again. Note that radio firmware updates are not currently possible over a SmartLink connection.

Note: Some firmware updates make changes to the radio’s processor that regulates its internal temperature. When this happens, the radio’s fans will run at full speed as a safety precaution until the update is finished. This and other unusual occurrences during firmware updates should not be considered problems unless they persist after the update is complete. A complete power down cycle may help eliminate these kinds of issues following an update.

6.1 DOWNGRADING THE FIRMWARE

If the active version of SmartSDR requires an older radio firmware version, a pop-up window will be shown to verify that this is being done intentionally.

Clicking button will remove the current version of the firmware and install an older version that is compatible with the version of SmartSDR you are running. Click to maintain the existing version of the firmware.

Note: If you were not intending to downgrade the radio, check to make sure that you are running the correct version of SmartSDR.

Once the process has started you will see a progress bar showing the approximate completion status. Upon completion of the update you will see appear next to the radio in the list box. Firmware updates usually complete in a few minutes. If the progress bar goes all the way to the right and stops, and the update does not complete within a few minutes, restart the radio and SmartSDR and try again.

Note: If downgrading from SmartSDR v3.0+ to something prior, a reset to Factory Defaults will be necessary after the downgrade as a result of database schema changes. See section 40 for details.
on performing the reset. Once the Factory Defaults have been restored, exported settings from the downgraded version may be imported.
LICENSING THE RADIO FOR SMARTSDR

SmartSDR for Windows is licensed software. FlexRadio Systems makes the software available under license to owners and users of FlexRadio Systems 6000 Series radios. Generally, a license for the latest version of SmartSDR is granted as part of a radio purchase with a grace period for those that have recently purchased just prior to release. For v3, any FLEX-6000 Signature Series radio or SmartSDR v2 license that was purchased on or after Oct. 1, 2018 will automatically receive a SmartSDR v3 license. No additional license purchase is required in this case. Owners of other radios, not licensed for Version 3, will need to purchase a license as part of the installation process.

When SmartSDR is started on a radio that has not been licensed, you will see a screen like this:

You will not be able to connect to the radio and operate it until a license is purchased and installed in the radio. Click on the Buy button to launch the default web browser. You will be directed to a series of web pages in which you may purchase the license.

When the purchase is complete, return to SmartSDR and click the button. The radio will search for a new license and install it when it is found. It may take up to a minute after the purchase completes for the license to become available for installation. A reboot of the radio may be necessary to complete this process.

Note: The radio must have access to the Internet for this step to complete. A radio that is wired directly to a computer that connects to the internet via Wi-Fi usually will not have internet access. Internet Connection Sharing may be used in this configuration to solve this problem. See the helpdesk at http://helpdesk.flexradio.com for more information.

The license applies to the radio it was purchased for, not to the owner of the radio or any instance of SmartSDR for Windows, SmartSDR for Maestro, SmartSDR for iOS or any other radio client. Each
radio has a unique identifier that is associated with the license. Only one license is required for any radio, regardless of the number of instances of SmartSDR that may use the radio.

Licenses are not transferable to other radios. If the ownership of a radio changes, the license moves with the radio.

Once the radio has found and installed the license, it does not need to be connected to the Internet to run SmartSDR (remote access via SmartLink, however, requires Internet of course). In addition to the license stored in the radio, a copy is stored securely online. When the radio is connected to the Internet, it periodically checks its license status and updates it as appropriate.
8 INITIAL SETUP OF SMARTSDR CAT AND DAX

The SmartSDR CAT and DAX subsystems are part of the SmartSDR for Windows software system. They provide services for third-party programs so that the radio can be controlled (via CAT commands) and audio information can be sent and received (via DAX audio channels). The two systems take the place of wired CAT controls and wired audio circuitry used in other radio systems.

The SmartSDR CAT and DAX subsystems are installed on the PC as part of the SmartSDR for Windows installation. Icons for these programs are placed on the desktop for convenience and can be placed in the Windows Start menu or on the Taskbar like any other program. Unique icons are associated with each program.

8.1 INITIAL SMARTSDR CAT SETUP

The SmartSDR CAT subsystem provides two ways for third-party programs to control a FLEX-6000 Series transceiver. It can synthesize COM ports in the Windows system that will be seen by third-party programs as physical serial communication ports. If the program opens one of these ports, it can send and receive CAT commands and replies to and from the radio. From the point of view of the third-party program, the radio is connected to the computer with a traditional “serial cable”. But in fact, the CAT system moves the information over the Ethernet connection between the computer and the radio.

The SmartSDR CAT subsystem also provides a TCP/IP socket interface to the FLEX-6000 Series transceiver so that programs that use that sort of interface can communicate with the radio and control it using CAT commands.

A SmartSDR CAT subsystem icon is installed in your Windows system when the SmartSDR for Windows software is installed. Click on the CAT icon to start the SmartSDR CAT subsystem. SmartSDR can be configured to automatically start and stop the SmartSDR CAT subsystem. See section 41.2.1, Menus for more details.
The SmartSDR CAT subsystem can be connected to any FLEX-6000 Series transceiver that can be reached by the Windows PC. A radio chooser window, similar to the SmartSDR chooser, appears when SmartSDR CAT is started and no radio has been chosen:

All FLEX-6000 transceivers available in the local area network will be shown in the chooser. Click on the desired radio then click the Connect button to connect the CAT subsystem to the radio. CAT supports only one radio at a time.

The SmartSDR CAT subsystem can also use SmartLink to connect to a remote radio. Details about this mode of operation are found in section 9.3, SmartSDR CAT and DAX in SmartLink.

Once a radio has been chosen, the CAT control panel appears, which will look similar to the following:
The control panel displays the radio that has been selected by the SmartSDR CAT subsystem, the selected Station, and the CAT connections that are available to that radio. Details about the use of the control panel are found in the *SmartSDR CAT Software User’s Guide*.

Selecting a Station is the next step. In a multiFLEX system, since there can be more than one operating position (possibly in different locations), it becomes important to understand which Station to use as an operational context for CAT. Usually this is as simple as choosing the Station that is running on the same PC (or Maestro/M Model, depending on where the operator will be primarily operating). Until a Station is selected, no ports will be shown since this context is necessary for the operation of CAT. If the selected station is not available, the blue circle to the right of the Station selection will turn red to indicate the Station is not currently connected to the radio.

The **Settings** button on the control panel and on the CAT chooser opens a menu of options as shown below:

The **Select Radio** option closes the CAT control panel and opens the CAT chooser. The **On Startup, Auto Connect Last Radio** option causes the SmartSDR CAT subsystem to skip the chooser and connect to the last radio it was connected to provided that the radio is available upon startup. When the **Auto Connect SmartLink** option is also selected, CAT will automatically connect to a remote radio, using SmartLink.
8.2 INITIAL DAX SETUP

The DAX subsystem provides digital audio channels that carry audio information between a FLEX-6000 Series transceiver and third-party programs. This section describes the initial setup of the DAX subsystem control panel. The control panel provides status information for the TX Stream (audio that will be transmitted), the RX Streams (audio that has been received), the MIC Stream (microphone audio) and the IQ Streams (raw received signal). On/Off controls and Gain controls are provided for each of these streams on the Control Panel. See section 35.1.3, DAX Control Panel Setup for the controls that configure the DAX streams.

A DAX subsystem icon is installed in your Windows system when the SmartSDR for Windows software is installed. Click on the DAX icon to start the DAX Control Panel. SmartSDR can be configured to start and stop the DAX Control Panel. See section 41.2.1, Menus for more details.

The DAX subsystem can be connected to any FLEX-6000 Series transceiver that can be reached by the Windows PC. A radio chooser window, similar to the SmartSDR chooser, appears when DAX is started and no radio has been chosen:

All FLEX-6000 Series transceivers available in the local area network will be shown in the chooser. Click on the desired radio then click the Connect button to connect the DAX subsystem to the radio. DAX supports only one radio at a time.

The DAX subsystem can also use SmartLink to connect to a remote radio. Details about this mode of operation are found in section 9.3, SmartSDR CAT and DAX in SmartLink.

Once a radio has been chosen, the DAX control panel appears, which will look similar to the following:
The control panel displays the radio that has been selected by the DAX subsystem, the selected Station, and the streams that are available to/from that radio. Details about the use of the control panel are found in section 35.1.3, DAX Control Panel Setup.

Selecting a Station is the next step. In a multiFLEX system, since there can be more than one operating position (possibly in different locations), it becomes important to understand which Station to use as an operational context for DAX. Usually this is as simple as choosing the Station that is running on the same PC (or Maestro/M Model, depending on where the operator will be primarily operating. Until a Station is selected, no streams will be shown since this context is necessary for the operation of DAX. If the selected station is not available, the blue circle to the right of the Station selection will turn red to indicate the Station is not currently connected to the radio.

The Settings button on the control panel and on the DAX chooser opens a menu of options as shown below:

The Select Radio option opens the DAX chooser. The On Startup, Auto Connect Last Radio option causes the DAX subsystem to skip the chooser and connect to the radio it was previously connected to. When the Auto Connect SmartLink option is also selected, DAX will automatically connect to a remote radio, using SmartLink.
9 SMARTLINK

9.1 SMARTLINK OVERVIEW

Use SmartLink™ to operate your Flex 6000 Series radio with a computer running SmartSDR for Windows Version 2 connected to the Internet from a remote location. SmartLink provides authenticated, secure access to the radio over the Internet at effective data transfer speeds.

It is not necessary to log into SmartLink when connecting to radios that are local to SmartSDR. They will appear in the radio chooser when SmartSDR is first started. Simply click on the desired radio, then click the Connect button.

SmartLink has been designed with four main goals in mind: simplicity, security, performance and expandability.

Simplicity: For most operators, setting up and using SmartLink will be plug and play. Simply upgrade your radio software to SmartSDR version 2 (or later), create a SmartLink account, register your radio in your SmartLink account and enjoy remote access from anywhere with Internet access. Once a radio is registered, it will appear in SmartSDR’s radio chooser when you are operating at a remote location just as if SmartSDR were running in the radio’s local area network.

Security: We know that keeping your data and access to your radio secure is of utmost importance. To ensure this, all communication between SmartSDR clients, radios and SmartLink servers is encrypted and authenticated using the TLS protocol (the successor of SSL). SmartLink provides secure and safe authentication using the latest token-based sign-in methods while still allowing the flexibility of signing in with Facebook or Google credentials or a username and password of your choice.

Performance: Our goal is to provide the same level of performance with a SmartSDR SmartLink connection that operators have come to expect from SmartSDR locally. Although there is a recommended minimum connection bandwidth, the FLEX-6000 architecture will perform well using slower Internet connections than other radio architectures.

Expandability: SmartLink is designed to scale as more operators and features are added. Third party developers will be able to implement programs on the SmartLink API to bring remote connectivity to other applications.
9.2 SMARTLINK SETUP

9.2.1 Create a SmartLink Account

SmartLink requires an online user account to store the SmartLink user credentials and connection information about the radios users are authorized to use. To create your SmartLink account or log into an existing account, start SmartSDR and click the blue Log In button near the top of the radio selection screen.
The following screen will appear. If you do not have a SmartLink account, click **Sign Up** in the **SmartLink Login** screen to create an account using either an email address and password of your choice, or the credentials of an existing **Google** or **Facebook** account. Follow the instructions to create the account, then fill in the Name and Callsign fields and click the **Save** button.

If you already have a SmartLink account, click **Log In** in the **SmartLink Login** screen and then enter either your email address and password, or click the Facebook or Google button to log in using credentials from those systems.

Note: You will remain logged into your SmartLink account until you explicitly log out, even if SmartSDR is restarted.

Note: Be careful to note which type of credentials you used to create your SmartLink account as you will need to use the same credentials to access your radio from a remote location. Using different credentials may result in your radio not showing up in your connection list when trying to connect from a remote location.
9.2.2 Register the Radio in SmartLink

The next step is to register your radio in your SmartLink account. Begin by clicking on the radio in the radio chooser. **Connect** and **SmartLink Setup** buttons will appear at the bottom of the screen. Click the **SmartLink Setup** button. The following window will appear. Click the **Register** button below the account details.
After a brief period to establish a secure connection, a prompt to key the radio will be shown.

Use a Hand Mic, CW Paddles, or an RCA PTT input to key the radio. This cannot be done via the Maestro MOX button or any remote keying input. This step ensures that you, the radio owner, having physical access to the radio, authorize it to be associated with your SmartLink account. Similar measures are required should you need to unregister your radio from the SmartLink account.

Note: You will not be able to connect to the radio from outside your local network until this step is successfully completed. This step must be done on the local network.
When the radio is registered, the screen will update to indicate the registered status as shown below.

The final configuration step is to map communication ports in the radio to the outside world. Open the Network Settings pane as shown above and select Automatic mode. Click the Test button. If the indicator turns green, SmartLink configuration for your radio is complete.

Automatic mode should work for most networks. If it doesn’t, it may be necessary to enable UPnP (Universal Plug n Play) in your router or to manually configure port forwarding, also in your router. Refer to the following HelpDesk article for more information: https://helpdesk.flexradio.com/hc/en-us/articles/115003365503-What-is-Port-Forwarding-and-How-do-you-do-it

9.2.3 Test the Radio in SmartLink

Referring to the figure above, open the Network Settings pane and click the Test button. SmartLink will send a request to the online SmartLink server to test the connection to the radio using the information configured in section 9.2.2. If the SmartLink configuration is correct, the indicator next to the Test button will turn green. Holding the mouse cursor over the indicator will reveal configuration information about the SmartLink connection.

9.3 SMARTSDR CAT AND DAX IN SMARTLINK

The SmartSDR CAT and DAX subsystems are both supported in SmartLink. CAT control commands can be sent and received to a remote radio from a local program using the SmartSDR CAT interface. DAX audio data can be sent and received to and from a remote radio and a local program. Each of the SmartSDR CAT, DAX and SmartSDR radio choosers provide a full SmartLink interface so that any of them can be used to create or log into a SmartLink account.
9.4 USING SMARTLINK

Use SmartLink to operate your Flex 6000 Series radio with a computer running *SmartSDR for Windows* Version 2 connected to the Internet from a remote location. SmartLink provides authenticated, secure access to the radio over the Internet at effective data transfer speeds.

It is not necessary to log into SmartLink when connecting to radios that are on the local network (for instance the same room/house). They will appear in the radio chooser when SmartSDR is first started. Simply click on the desired radio, then click the **Connect** button.

To connect to a radio from a remote location, start by launching SmartSDR. You will see a window like this:

![SmartSDR Login Window](image)

Click the **Log In** button and follow the screens to log into your SmartLink account. Use the credentials you used to create the SmartLink account (see section 9.2.1, *Create a SmartLink Account*).
When the log in is complete, return to the SmartSDR start screen, which will now look like the following:

Radios available through SmartLink are shown in the list with the SmartLink logo.
Click on the desired radio to select it. **Info, Connect, Low BW Connect** and **SmartLink Setup** buttons will appear at the bottom of the screen.

Click on the **Connect** button to connect to the radio and open the SmartSDR main window. The radio will start, using the same settings (number of Panadapters, Panadapter frame rates, etc.) it would have used if operated locally. Remember to operate SmartSDR in LAN Remote mode so that audio data is transmitted to and from the PC (see section 20).

If the data rate from the radio to SmartSDR is higher than can be supported by the radio’s Internet connection, adjust the number of Panadapters, their frame rate and scrolling speed. See section 13.5, **Adjusting the Panadapter and Waterfall Controls** for details. Alternatively, use the **Low BW Connect** button to connect to the radio. This option is only available when connecting to a SmartLink connected radio. Using this instead of the **Connect** button starts the radio with a single Panadapter at a low refresh rate and with a single Slice Receiver allowing modest Internet connections to run SmartSDR remotely. In this mode, the radio does not open the connection using information it keeps about how the band was last used, such as the number and location of Slice Receivers.

SmartLink remains logged in after operating sessions have finished, so it is usually not necessary to repeat the log in process to start another session. However, there are circumstances when it is desirable to log out at the end of an operating session. To do this you must end the operating session, then start SmartSDR again, click the **Name/Callsign** banner at the top of the SmartSDR start screen, then click **Logout** in the **Account Settings** screen.
10 HOW TO DETERMINE THE IP ADDRESS OF THE RADIO AND THE SOFTWARE VERSION NUMBERS

Bring up the Radio Setup Panel by clicking the “Settings” drop-down menu at the top left of SmartSDR. Then select “Radio Setup”.

Located in the “Radio” tab is basic information about the selected radio. Radio Hardware version refers to the version of SmartSDR that is running and the associated radio firmware.

Located in the “Network” tab is information about the Flex 6000 Series radio, including the IP address used by the radio.

Note: When the radio is connected via SmartLink, the IP Address shown will be the External IP of the network through which the radio is connected.
11 SMARTSDR OVERVIEW

11.1 THEORY OF OPERATION

SmartSDR is a software system designed to run on radios such as the FLEX-6000 Signature Series. SmartSDR has been designed to work on hardware platforms that perform wide-band sampling of the RF spectrum. How is wide-band sampling different from other radios?

In superheterodyne (also called “superhet” or “multiconversion”) radio systems, a series of down-conversions using local oscillators is performed on the RF input ultimately resulting in a baseband signal. This signal is generally only a few kilohertz wide and is ready to be demodulated and presented to the operator in the form of audio. In a superheterodyne architecture, generally only a single receiver is available at a time and the receiver has limited bandwidth.

In a wide-band sampling radio, a large portion of the spectrum is sampled (turned into digital information) all at once. This sampling provides the basis for the use of several analysis tools and receivers in the spectrum simultaneously, all from the one hardware sampler.

11.2 KEY SMARTSDR COMPONENTS

11.2.1 Spectral Capture Unit (SCU)

Because the notion of a receiver is firmly established in both the amateur community and possibly the rest of the world, it seemed inappropriate to describe the functionality of a wide-band sampling system simply as a “receiver”. Instead, in the SmartSDR world there are one or more “Spectral Capture Units”, or SCUs, that are responsible for the collection of wide-band data from the RF spectrum. The SCU components are an antenna input, an optional set of receive pre-selectors, and an analog-to-digital converter (ADC). Each SCU in the radio system can be connected to only one antenna at a time, but due to the sampling architecture it may support multiple receivers and spectrum displays. The SCU enables listening to multiple bands at the same time on the same antenna. A hardware platform with multiple SCUs such as the FLEX-6600, FLEX-6600M and FLEX-6700 allows for monitoring multiple bands on different antennas or the ability to perform more complex noise mitigation techniques that are available in multi-antenna systems.

11.2.2 Slice Receiver

SmartSDR can create many receivers out of the data collected from the SCU. How does this work? The characteristics of the SCU sampled data stream vary by radio model but is typically 1-4Gbps of data that contains all activity across a large section of the RF spectrum. In the FLEX-6700, for example, an SCU tuned to the HF band collects every signal present in the spectrum from 0-73MHz! This data is not directly observable or understandable by an operator, so several tools exist for understanding and using the SCU data, the first of which is the Slice Receiver. Each Slice Receiver is tuned to a specific frequency just as a Variable Frequency Oscillator (VFO) would be in a traditional radio. The Slice Receiver then takes this more manageable amount of data (typically describing 10-20kHz of the band) and performs operations to output the signals required by the operator.

For example, in the case of a single sideband receiver, the Slice Receiver will demodulate the upper (or lower) sideband of the data collected, will filter it according to the receiver filter settings, may perform noise mitigation techniques on the data and then ultimately passes it to an audio system to become sound for the operator. Because the source of the Slice Receiver data is always the SCU data and each Slice Receiver uses the same techniques to demodulate, filter and convert the signal into
audio, each Slice Receiver shares the same base performance as the other Slice Receivers. For the operator, this means that access to two or more receivers with the same top performance may be used interchangeably without concern for differing performance characteristics of each receiver often found in superheterodyne receivers.

11.2.3 Panadapter

The Panadapter uses the data available from the SCU and turns it into a visual representation of the radio frequency spectrum. The Panadapter display, pictured below, shows the level of signals present across a specific region of the spectrum just as a spectrum analyzer would. The higher the white line appears in the display, the stronger the signal is in that part of the band. A scale for the absolute signal level in dBm (decibels relative to one milliwatt) is provided on the right-hand side of the display. This allows the operator to quickly identify signals of interest where the operator can focus his/her efforts.

Each Panadapter is derived from the data from a single SCU so it is possible in multiple-SCU radios to show two different Panadapters tuned to the same region of the spectrum, each with data from a different SCU and ultimately a different antenna. The Panadapter shows the current state of the spectrum and can be adjusted to show various widths of spectrum. A Panadapter can be seen below:

11.2.4 Waterfall

The Waterfall uses the same data from the SCU as the Panadapter and turns it into a time-based visual representation of the spectrum. In the Waterfall, intensity of signal is represented by a change in color in a similar way as water density is shown in weather radar. The vertical position in the Waterfall represents the time that the information on the spectrum was obtained. The Waterfall owes its name to the way that it continually moves downward like a Waterfall as time passes. The Waterfall can be useful for understanding how signals are distributed in the spectrum over time, locating where stations have recently transmitted and even locating “holes” where operation will not interfere with other stations. A Waterfall can be seen below:
11.2.5 Panafall

The Panafall display is simply a Panadapter and a Waterfall that are joined such that the horizontal axis has the same frequency location. In this way, the Panadapter portion of the display will show the current state of the spectrum and the Waterfall portion will show a historical perspective.

11.3 DYNAMIC FILTER DEPTH

In most SDR systems, the number of filter taps employed to carry out the filtering task are set by a buffer size in the system. To change the filter tap depth, the system must be stopped before the adjustment can be made. As more taps are added, filtering becomes sharper, but latency also increases. In SmartSDR, the number of filter taps employed changes based on the mode and filter width to achieve the best compromise between latency and filtering for the job. Ultimately, the filtering capability and the latency are a function of the total duration of samples inside the filter at any time. The table below shows the number of samples used in the filter, based on mode and filter size. The more samples (and consequently time) inside the filter, the sharper the filter and the higher the latency.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Filter Width</th>
<th>Filter time</th>
<th>Filtering</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB / LSB</td>
<td>Any</td>
<td>85ms</td>
<td>Excellent</td>
<td>Highest</td>
</tr>
<tr>
<td>CW</td>
<td><= 400Hz</td>
<td>85ms</td>
<td>Excellent</td>
<td>Highest</td>
</tr>
<tr>
<td></td>
<td><= 1kHz</td>
<td>43ms</td>
<td>Very Good</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td><= 1.5kHz</td>
<td>21ms</td>
<td>Good</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>> 1.5kHz</td>
<td>11ms</td>
<td>Good</td>
<td>Very Low</td>
</tr>
<tr>
<td>AM</td>
<td>Any</td>
<td>85ms</td>
<td>Excellent</td>
<td>Highest</td>
</tr>
<tr>
<td>FM</td>
<td>Any</td>
<td>11ms</td>
<td>Good</td>
<td>Very Low</td>
</tr>
<tr>
<td>DIGU / DIGL</td>
<td><= 500Hz</td>
<td>85ms</td>
<td>Excellent</td>
<td>Highest</td>
</tr>
<tr>
<td>Waveform Mode</td>
<td><= 1kHz</td>
<td><= 2kHz</td>
<td>> 2kHz</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43ms</td>
<td>21ms</td>
<td>11ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very Good</td>
<td>Good</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>Low</td>
<td>Very Low</td>
<td></td>
</tr>
</tbody>
</table>

When using low latency ARQ mode digital programs such as PACTOR, the recommendation is to use a filter width greater than 2kHz to avoid adding extra latency inside the radio to the demodulation time.

See section 39.9, Filters Tab for additional information.
12 HOW TO OPERATE A SLICE RECEIVER

12.1 HOW TO CREATE AND DESTROY A SLICE RECEIVER

To add a Slice Receiver, click the +RX button in the Panadapter menu on the left side of the Panadapter. This action will place an additional Slice Receiver resource inside the corresponding Panadapter. A Slice Receiver will be created in the center of the Panadapter if none exist. If a Slice Receiver is already present in the Panadapter, the new Slice Receiver will be created with the same basic characteristics (mode, DSP settings, etc.) as the active Slice Receiver, or with the characteristics of the Slice Receiver closest to the center of the Panadapter.

When you have utilized all your available Slice Receiver resources, the Add Slice Receiver button will be dimmed indicating that the action is no longer available. It will return to an available state once a Slice Receiver is closed.

If your cursor is already in the position in the display where you would like to create a receiver, you may right-click the Panadapter revealing a pop-up menu which will allow creation of a Slice Receiver at your current position.

When a Slice Receiver is within the bounds of a Panadapter, the Close Button will remove the slice from the Panadapter. It will no longer be available for reception or transmission of audio.

Note: If the removed Slice Receiver was enabled for transmission, the radio will be unable to transmit until another Slice Receiver is selected for transmission.

If a slice has moved off-screen outside the bounds of a Panadapter, the Slice Receiver display will change to indicate where the slice is tuned relative to the Panadapter. Double clicking on the
indicator will tune the Panadapter display to center the slice, leaving the slice frequency unchanged. The indicator also will show if the transmitter is enabled in the off-screen slice.

An off-screen slice can be closed by right-clicking on the off-screen indicator and selecting “Close Slice” or moved on-screen by selecting “Move Slice here” as shown below:

If a Slice Receiver moves too far beyond the bounds of the Panadapter, it will be put into a detached state and will no longer produce audio. Moving the slice back into the bounds of the Panadapter will put the Slice Receiver back into a normal state which produces audio. The bounds of the Panadapter are determined by the radio hardware and vary by radio model.

12.2 HOW TO TUNE A SLICE RECEIVER

Drag Tuning: Drag Tuning is one of the more common tuning methods. By placing the cursor over the Receive Filter (lighter blue area of the Slice Receiver) or the carrier (the vertical yellow or red line of the Slice Receiver), the cursor will change to a small hand icon. Clicking and dragging when the hand icon appears will change the frequency of the slice up or down in frequency as the Panadapter remains stationary. This tuning will occur in increments of the currently selected step size assuming the Snap to Tune Step feature is enabled (see section 39.8, RX Tab). While dragging, when the slice reaches the edge of the Panadapter the slice will stop and the Panadapter will begin to move behind the slice. This is called Pan Edge Tuning and allows for rapid tuning above or below the Panadapter’s current frequency range.

Click Tuning: Double clicking anywhere in the Panadapter grid will initiate a Click Tune. Click tune will move the active or closest slice to the frequency where the mouse pointer is located.

Direct Frequency Entry: Direct Frequency entry for any Slice Receiver is a tuning option. Simply highlight the slice frequency display using the mouse and type in the frequency from the keyboard in megahertz using a single separator specific to your country (for the US it is a period, for other countries it may be a comma). For example, entering “14.0705” will tune to 14.070.500. You can also enter some frequency ranges using kilohertz, but the data entered is limited to 4 or 5 digits and you cannot use a country specific separator. For example, entering “7250” will tune the Slice Receiver to 7.250.000 megahertz.

Mouse Wheel Tuning: Mouse scroll wheel tuning is available when an active slice is selected, and the mouse is focused on, and within the boundaries of, SmartSDR.
Tuning Guides: Right clicking on a panadapter in a location not containing a slice receiver opens a menu of options available at that location:

Selecting the **Tune Guide** option causes a fine vertical line to appear on the panadapter that follows the mouse cursor. The frequency that corresponds to the position of the line is displayed next to the cursor, shown at a resolution of 1 Hz. Double clicking will tune the active slice to the value of the **Tune Guide**, rounded to a value determined by the **Tune Step Size**. Remove the **Tune Guide** by right clicking on the panadapter and deselected the option.

FlexControl Tuning: FlexControl tuning will tune the active slice regardless of the mouse focus when the tuning of the VFO is assigned to the FlexControl knob.

Tune Step Size: The amount of frequency change caused by one tuning action on the FlexControl, mouse scroll wheel or by dragging is determined by the active slice Tune Step Size. Tune Step Size is mode group specific and can be set by the user using the Step Size adjustment on the active slice Widget. The FlexControl utilizes an accelerated tuning feature that will tune larger frequency steps when the knob is rotated more quickly.

12.3 MAKING A SLICE RECEIVER ACTIVE

A Slice Receiver consists of a center Carrier Frequency displayed by a solid yellow or red vertical bar. A yellow bar indicates the slice is “Active,” indicating that this is the slice that you are currently manipulating. An active slice will have the focus of tuning devices such as the mouse wheel and the FlexControl. You can toggle the active slice by clicking anywhere on an available slice’s filter display. When a new Slice Receiver is selected as the active slice, the old active slice will become inactive and its carrier line will change to the red color. There can only be one active slice under tuning device control at a time in SmartSDR.

12.4 HOW TO CHANGE THE DEMODULATION MODE

The Mode Menu button on the Slice Flag displays the mode that is currently selected. Inside the menu there is a mode drop down menu and three quick-select modes. To change the quick-select modes to a different mode, use a
right click to expose a drop-down menu of available modes. Beneath the mode select buttons are the mode specific Filter Presets.

The position of the Receive Filter relative to the Carrier Frequency will correspond to the conventions of the current mode. A Receive Filter to the right of the Carrier indicates Upper Sideband mode. A Receive Filter to the left indicates Lower Sideband mode. A Receive Filter that spans both the left and right of the Carrier will indicate a double sideband mode.

12.5 HOW TO ADJUST THE SPEAKER AND HEADPHONE VOLUME OF A SLICE RECEIVER

![Audio Menu](image)

Clicking on the slice Audio menu button will expose the slice specific audio controls. Right clicking on the slice Audio menu button offers a shortcut for muting or un-muting the audio without having to enter the menu. The slice Audio Menu includes a Mute button and volume slider to adjust the audio level of the slice, and a Left and Right balance button and slider to adjust the balance between left and right channels for headsets or speakers. Clicking on the L and R buttons will step between panning to the far left/right and centering the audio in the stereo sound stage. The Automatic Gain Control (AGC) drop-down menu allows the user to select Fast, Medium, Slow and Off AGC settings. The slider to the right of the AGC drop-down controls AGC Threshold. See section 15.1 for detailed information about the use of the AGC.

12.6 HOW TO CHANGE THE RX FILTER OF A SLICE RECEIVER

A blue Receive Filter bar which represents the filtered receive audio surrounds or is adjacent to the carrier frequency line. The portion of spectrum that is highlighted by the Receive Filter bar is output as audio.

![Receive Filter](image)

The Receive Filter width can be adjusted manually by hovering the mouse over the edge of the bar to get the `<>` cursor. Clicking and dragging will expand or reduce the bandwidth of the filter.

The Filter Control Widget is used to adjust the high cut and low cut of the Receive Filter. To initiate the Filter Control Widget, hover your mouse over the Carrier Frequency just above the horizontal axis Frequency bar. This will cause the Filter Control Widget to appear. Within the widget there are three sections separated by dotted lines.

If you hover your mouse over the left section a left Control arrow will appear. Clicking and dragging left or right will adjust the low cut of the filter and will be displayed as the left side of the Receive
Filter moving left or right. The value at the bottom of the widget displays the separation from the carrier frequency.

The center section adjusts both the high cut and low cut of the filter simultaneously. Hovering over the center section causes a four-way arrow to appear. Clicking and dragging up and down from within this section will decrease/increase the low cut while increasing the high cut of the filter effectively making the Receive Filter bar wider. Clicking and dragging left and right will move the Receive Filter bar left and right relative to the Carrier Frequency.

If you hover your mouse over the right section a right Control arrow will appear. Clicking and dragging left or right will adjust the high cut of the filter and will display as the right side of the Receive Filter moving left or right. The value at the bottom of the widget displays the separation from the carrier frequency.

12.7 PREDEFINED RECEIVE FILTERS

Slice Receivers provide a set of predefined receive filters for each reception mode:

Clicking on the mode button in the Slice Receiver opens a drop-down menu in which you can select the reception mode or choose one of the predefined reception filters.

12.8 RECORDING AND PLAYBACK OF SLICE RECEIVER AUDIO

Slice receivers may be recorded, and the recording played back over the air using the Quick Record/Playback feature of SmartSDR. To the left of each Slice Receiver flag are both a record (red circle) and play button (gray/green triangle).

On startup, there is no recorded audio in the playback buffer and so the play button will be disabled (greyed out). To record audio from the Slice Receiver, press the record button (red circle) once. While recording, the record button will animate a repeated pulse.

Recording will continue until the record button is pressed again or until two minutes have passed. Recording will include any received audio while in receive mode and any transmit audio when the radio switches to transmit mode. Once the recording is stopped, the record button will return to a solid red circle and the play button (green triangle) will be active:
To playback the audio, press the play button. If the play button is pressed while the radio is in receive mode, the playback audio will be routed to the speakers and headphones. If play is pressed while the radio is in transmit mode, the audio recording will also play through the transmitter.

To stop playing audio, press the play button a second time or wait for the recorded audio to finish playing.

To record or play again, press the appropriate button. Only one audio recording per Slice Receiver is saved. The audio played during transmit can originate in any Slice Receiver regardless of whether the Slice Receiver that recorded the audio is the Slice Receiver now transmitting. For example, you may record audio using Slice Receiver A and then playback that audio over the air using Slice Receiver B. To do this, make Slice Receiver B the transmitter by selecting it using the red TX selection to the left of the letter B. Press the MOX button, PTT on the microphone, footswitch or other PTT source and then press the play button on Slice Receiver A.
13 HOW TO OPERATE THE PANADAPTER / WATERFALL

13.1 HOW TO CREATE / DESTROY A PANADAPTER / WATERFALL

On the lower tool bar of SmartSDR there is a button to create a new Panadapter and Waterfall. This control will add another Panadapter to the Main Window. The control will be a dark shade of grey when you have used all the available Panadapter resources.

Clicking the Close button will remove the Panadapter and any Slices that are displayed in the Panadapter. When this occurs, you will not be able to use the Slice resources until they are recreated in another Panadapter.

13.2 HOW TO CHANGE THE PANADAPTER FREQUENCY (TUNE)

Each Panadapter can perform a pan function to adjust the frequency range that is displayed. Clicking and dragging within the Panadapter grid will reorient the frequencies being viewed on the Panadapter in the direction that your mouse is moving. By moving your mouse to the right, you will display lower frequencies and vice-versa.

The Band menu button in the Panadapter menu will expose the Band Menu. Selecting a band from this list will adjust the Panadapter to display all or part of the corresponding amateur radio band. Selecting band buttons allows for rapid switching between views of the amateur radio bands. Clicking the Band menu button again collapses the menu. Clicking on the XVTR button in the lower right swaps the buttons to a list of XVTR bands. Click the HF button to swap back.

When switching between bands, if any Slice Receivers are defined in the Panadapter, these are removed. If Slice Receivers were present in the new band the last time the band was active in the radio, they will be recreated. If no Slice Receivers were present, none are created.

13.3 HOW TO ZOOM A PANADAPTER

Each Panadapter has a zoom range up to a maximum of 14 MHz for the FLEX-6500, FLEX-6600/M and FLEX-6700 or 7 MHz for the FLEX-6300 and FLEX-6400/M down to a minimum of 1.5 kHz in bandwidth for the FLEX-6600/M and FLEX-6700 and 6kHz in bandwidth for the FLEX-6500, FLEX-6400/M and FLEX-6300. There are multiple methods for adjusting the zoom of the Panadapter.

Use the plus and minus magnifying glass buttons located in the bottom left corner of the Panadapter for rapid zooming. Zooming out (-) will double the bandwidth presented in the Panadapter while zooming in (+) will halve the bandwidth. The frequency at the center of the Panadapter will remain the same after each change in bandwidth.
For more precise control of the zoom, click and drag anywhere on the frequency labels located at the bottom of the Panadapter.

Dragging the frequency labels to the right zooms in, dragging to the left zooms out. With this method, the frequency at the point where your mouse was located when clicked will remain stationary in the Panadapter.

Next to the plus and minus buttons located in the lower left corner of the Panadapter display, you will see the B control. Clicking this control changes the zoom level so that the entire band that contains the Active Slice Receiver is displayed on the Panadapter. Clicking the control again returns the Panadapter zoom to its previous level.

When zooming out of a Panadapter there are certain points where the amount of data needed to create the display needs to be doubled. As this occurs more noise will be included in the FFT bins comprising the display which will cause a noticeable increase in the noise floor. The reverse occurs when zooming in on a Panadapter. Each time one of these thresholds is crossed, either zooming in or out, the noise floor will increase or decrease by about 3 dB. After zooming out to a certain point, the hardware will switch to wideband mode, which causes the radio to open the Bandpass Filters to their maximum bandwidth. When this occurs, any Panadapters using that antenna will display the WIDE in the top right corner to indicate that they are in wideband mode.

Note: The FLEX-6300 is always in WIDE mode and will not show this indicator.

Just to the left of the WIDE indicator is an indicator that shows if the preamplifier is active and if so, at what level. A complete description of the preamplifier control can be found starting in section 29.11.

To the left of the preamplifier indicator is an indicator for whether the Panadapter is on a Transverter (XVTR) band. A complete description of how-to setup for XVTR operation can be found in section 31.

13.4 HOW TO CHANGE THE SIGNAL MAGNITUDE SCALE OF A PANADAPTER

Each Panadapter will allow you to adjust the maximum and minimum amplitude displayed. Clicking the up or down arrows displayed in the top right corner of the Panadapter will increase or decrease respectively the maximum amplitude displayed in 10 dB increments. You may also adjust the minimum amplitude by clicking and dragging the vertical axis. This will effectively adjust where the noise floor is positioned within the Panadapter.
The vertical scale is calibrated in dBm, showing the signal strength as measured at the antenna terminal.

13.5 ADJUSTING THE PANADAPTER AND WATERFALL CONTROLS

Display menu button on the Panadapter menu will expose the display controls. A horizontal line separates Panadapter controls (top) from Waterfall controls (bottom).

The FPS slider controls the rate that the Frequency Spectrum is drawn on the Panadapter, in frames per second. Lowering the FPS control has several effects:

- It lowers the rate at which both the Panadapter and the Waterfall are updated
- It lowers the network bandwidth of data sent from the radio to SmartSDR, which may be important in situations of limited network bandwidth, especially when operating via SmartLink.
- As the rate of update is lowered, the extra data not displayed is averaged and so the variance of the data is lowered, making both the Panadapter and the Waterfall smoother while maintaining accuracy

If you prefer a faster updating display, but a more averaged or smoother one, adjust the FPS setting for the update speed you prefer and then raise the AVG (averaging) control. The AVG control increases the number of frames that are averaged, lowering the variance and smoothing the display.

The Fill control adjusts the amount of shading that is applied to the portion of the spectrum display below the signal line. The fill color can be chosen from the drop-down menu to the right of the Fill control.

The final Panadapter control, Weighted Average, emphasizes signals that are increasing in amplitude over ones that are declining, a fast attack, slow decay mode. This tends to continue to show locations where signals have been and show a more precise view of their full amplitude when they first appear.

Below the line at the center of the control are the Waterfall controls.
The Gain, Black and Auto controls work together to adjust how different signal levels are displayed in the Waterfall. The Black control sets the level below which all pixels will render as black. In other words, it sets the level at which signals are no longer of interest. The Auto control will automatically set the black level to just below the noise as band conditions, preamplifier changes or antenna changes alter the noise floor. To enable auto-black, click the Auto button so that it is blue.

The Gain control adjusts how rapidly the Waterfall will advance through the color spectrum for minimal changes in signal level. Lowering the gain gives the Waterfall a broader dynamic range but lessens its ability to show small variations in signals. Raising the gain lowers the dynamic range but provides more detail in the variations in smaller signals’ magnitudes.

The rate control adjusts how fast the Waterfall will advance on the screen. At the lowest setting, many minutes of data can be displayed. At its highest setting, the Waterfall displays a rapidly changing spectrum in the most detail.

In most cases Auto Black properly adjusts the background color or black level for the display’s zoom factor and the relative noise floor of the band you are viewing. You can, however, manually adjust the Waterfall display’s setting to allow for the display of weak signals at or near the noise floor. If the black level is set too low, many of the "in the noise" FFT bins will always be zero, regardless of the display gain setting. To achieve an ideal setting for the Waterfall black level, do the following:

- Turn the display gain level to maximum
- Adjust the Waterfall black level to a point where the Waterfall is primarily white, but there are approximately 2-5% black areas displayed.
- Turn the display gain down until the background is deep blue.

This ensures that small signals in the noise will be easily seen.
13.6 HOW TO CHANGE THE SIZE AND POSITION OF MULTIPLE PANADAPTERS

Clicking the Maximize button will prioritize the arrangement of the Panadapter at the top of the display. Once a Panadapter is maximized a grey horizontal separator will appear between the maximized Panadapter and any other Panadapters that are open at the time. Clicking and dragging this horizontal separator will increase or decrease the size of the maximized Panadapter. The non-maximized Panadapters will adjust to fill the remaining available space. To return to the standard view click the next to the close button. A maximum of three Panadapters can be maximized simultaneously.
When multiple Panadapters are open, clicking on the main bar and dragging its position will rearrange the Panadapter windows.

When two or more Panadapters are open, all but one of them can be popped out of the SmartSDR main window and sized and positioned anywhere on the PC display. Click the outward facing arrow that appears in the upper right corner of each Panadapter that is eligible to be popped out. You can return any popped out Panadapter to the main window by clicking the inward facing arrow in the Panadapter corner.
14 NOISE MITIGATION IN SMARTSDR

To properly utilize the DSP noise reduction features of SmartSDR, it is important to understand the type of noise causing interference. There is no single solution for noise mitigation since different types of noise require different algorithms. There are two primary types of noise that can be minimized using DSP techniques: white noise and impulse noise.

White noise is defined as random or uncorrelated noise with a uniform frequency spectrum over a wide range of frequencies. The sound of rain is an example of white noise. Three techniques are best used to improve signal to noise ratio in the presence of white noise:

- Reduced filter bandwidth
- Optimized AGC threshold (AGC-T) setting
- DSP Noise Reduction (NR)

Reducing filter bandwidth and optimizing the AGC threshold can significantly improve SNR without adding distortion or “coloring” the signal so long as the desired signal is not at the antenna noise floor. However, DSP noise reduction (NR) can provide significant intelligibility improvement on weak signals which may be near or below the antenna noise floor.

Impulse noise is a category of noise that includes almost instantaneous impulse-like sharp sounds generated by voltage spikes from arcing power lines, automotive ignition systems, electric fences, etc. Impulse noise can raise the wide band noise floor received at the antenna by tens of dB and thus completely mask signals that would otherwise be readable.

Traditionally, “noise blankers” have been utilized to mitigate this type of impulse noise. These techniques detect the noise pulses and literally turn off the receiver during the time of the impulse. The problem with traditional noise blanking techniques is that they have no way to tell strong signals on the band from impulse noise and can thus “mix” impulses with the strong signals to cause unwanted interference. SmartSDR incorporates a new Wideband Noise Blanking (WNB) algorithm that can differentiate between modulated signals and impulse noise, virtually eliminating the “mixing” problem found in traditional blankers. This WNB algorithm operates in real time over the entire Spectral Capture Unit (SCU) bandwidth to detect and replace impulses with an estimate of the desired signal.
15 HOW TO CONFIGURE NOISE MITIGATION

The FLEX-6000 Signature Series transceivers have several digital-signal-processing functions that enhance reception in noisy environments.

15.1 AGC THRESHOLD

Automatic Gain Control (AGC) is a feature which automatically adjusts the Slice Receiver’s audio gain (volume) based on the strength of signals in the receiver’s passband filter. The goal of AGC is to amplify weak signals and attenuate strong signals so that they all lie within a comfortable listening range.

The receiver Automatic Gain Control Threshold (AGC-T) can be adjusted for optimum performance in noisy or quiet environments. The AGC-T sets the maximum gain applied under any circumstances. Since the noise floor is relatively constant on a given band at a given time, the AGC can be adjusted using the threshold control so that the AGC never applies gain to noise, but it will apply gain to signals just out of the noise. In doing so, the AGC can reduce the level of noise you hear, and help signals pop out of the noise.

The AGC system in SmartSDR is a dual track system, meaning that it can track both slow and fast increases in signal strength, making appropriate gain correction decisions in the presence of each. The speed of the AGC (FAST, MED, SLOW) determines how quickly or slowly the AGC recovers after attenuating a strong signal. You can easily hear this by tuning to a CW signal and going through the three settings. On FAST with a strong signal you can hear the gain pump up and down while on SLOW it recovers after a longer pause once the signal stops. When the signal stops, you will hear the noise floor increase as the gain returns.

How to Set AGC for Different Operating Conditions

If you are listening to a loud voice signal, AGC SLOW will resist increasing the gain between syllables and therefore reject most of the noise which is at a level far below the signal. FAST and MED provide faster levels of recovery for situations when you want the system to more closely follow the dominant signal in the passband. Any time you have a very strong signal that causes the gain in the AGC to be reduced, you could experience a loss of gain to a weak signal you are listening to. The filter passband edges, which are continuously adjustable, and TNFs can be used to eliminate signals that might interfere with AGC operation.

The operator might prefer to use SLOW settings when rag chewing in a high signal to noise environment where there isn't much QRN and the noise floor is stable. This keeps the gain at more of a constant level that is less distracting. If the operator is trying to pull a weak CW signal out of the noise, they may prefer to use FAST mode to quickly ensure that the long-term average of the noise floor doesn't overcome the signal and prevent it from being heard. MEDium is a reasonable compromise.

When AGC is set to OFF, a fixed amount of gain determined by the AGC-T setting will be applied to both fast and slow signals regardless of their level. The more you increase the AGC-T, the more gain is applied and the louder the signal and noise will be. The benefits of increasing SNR with AGC are lost in this mode. Another disadvantage of turning AGC off is that the operator must adjust the 'RF Gain' manually to avoid distortion due to overload by strong signals.
Operating with AGC turned OFF may be desired by operators who want to avoid having a strong signal drive a weak nearby signal into the noise floor resulting from AGC audio attenuation, such as when operating digital modes.

To adjust the AGC Threshold, tune to a quiet spot between stations. Starting with the AGC-T at a high value adjust the AGC-T slider to the left (lower gain values) until the background noise just begins to decrease. This is the AGC-T "sweet spot" or the "knee" of the AGC algorithm. Depending on band conditions, if the AGC-T is set below 50, you may have to compensate for the loss in audio gain (volume) by increasing the Slice or master AF volume to a higher value. When you get the knee and AF volume adjustment correct for the band conditions, it will keep the volume of strong signals constant which will allow weaker signals to be heard even with AGC in FAST mode. Thus AGC-T is one of the most important adjustments, and often overlooked, to achieve the maximum weak signal receive performance out of the FLEX-6000 series SDRs.

The Automatic Gain Control Threshold (AGC-T) adjustments are located with the slice audio controls; it is the bottom control in the audio panel. Each Slice Receiver can have its own settings for the AGC timing and threshold.

The drop-down control sets the attack/release time for the AGC. You can choose FAST, MEDium, SLOW or OFF.

15.2 DSP NOISE MITIGATION FEATURES

The DSP control panel in the slice flag contains the enable buttons and threshold adjustments for the Wideband Noise Blanker, Slice Specific Noise Blanker, Noise Reduction, and Automatic Notch Filter. The midrange settings of the threshold controls are good starting points for adjustments.
15.3 WIDEBAND NOISE BLANKER (WNB)

The Wideband Noise Blanker (WNB) is used to combat fast rise time pulse-type noise such as power line hash and car ignitions. To enable the Wideband Noise Blanker, click the WNB button, then adjust the threshold control for the best noise suppression. In general, the default setting is adequate, but depending on the noise characteristics, some adjustment can help. The WNB Threshold control adjusts the level at which a sample is considered to be impulse noise. The general rule of thumb for this adjustment is to use the lowest level that is effective. For large impulse noise (meaning the noise floor jumps are large) a lower level should be used. If the impulse noise is causing only small jumps in the noise floor, a higher level can be used.

Large signals, both in the passband and around it, can result in distorted audio if the WNB threshold control is set too high.

Since the Wideband Noise Blanker operates at the SCU level rather than at the Slice level easy detection of wideband correlated noise pulses is possible. The algorithm employs an automatic slider normalization function to make the WNB work consistently on different bandwidths and signal levels. This unique architecture allows pulse removal with far less distortion than many traditional noise blankers.

Given the wideband nature of this feature, the threshold slider in the GUI controls an entire SCU, which may have several Panadapters and/or slice receivers attached to it. For convenience, the slider control is available in each slice and each Panadapter. Adjusting any one of them adjusts for an entire SCU, and all related slider controls are updated. Enabling and disabling the WNB function is available separately for each Panadapter. All Slices present on a Panadapter inherit the same value for the WNB enable and level.

When the WNB detects a significant change in signal level or bandwidth, it attempts to normalize the slider value. During this time, blanking will be momentarily bypassed, and the WNB indicator in the Panadapter will start to flash (blink). Once a suitable normalized slider range has been re-established, the noise blanking action will resume, and the WNB indicator will return to a solid color.

It is possible for certain WNB level settings to cause distortion with certain types of signals. For example, in the proximity of very large signals, noise may become worse with aggressive settings of WNB. If this is the case, either lower the WNB level setting, or disable WNB on that Panadapter.

15.4 SLICE SPECIFIC NOISE BLANKER (NB)

The Slice Specific Noise Blanker (NB) is used to combat fast rise time pulse-type noise such as power line hash and car ignitions, on a Slice Receiver basis. To enable the Noise Blanker, click the NB button, then adjust the threshold control for the best noise suppression. In general, the default setting is adequate, but depending on the noise characteristics, some adjustment can help. The NB Threshold control adjusts the level at which a sample is considered to be impulse noise. The general rule of thumb for this adjustment is to use the lowest level that is effective. For large impulse noise (meaning the noise floor jumps are large) a lower level should be used. If the impulse noise is causing only small jumps in the noise floor, a higher level can be used.

Unlike the Wideband Noise Blanker, the Slice Specific Noise Blanker algorithm considers only 24kHz of the RF spectrum, centered on the Slice Receiver’s tuned frequency, not the entire SCU RF
spectrum, as is the case with WNB. The NB algorithm complements the WNB algorithm and may be used with or without WNB. It may more effective than WNB, less effective or have no effect on specific examples of impulse noise.

The Slice Specific Noise Blanker may be turned on or off and adjusted for each Slice Receiver.

15.5 NOISE REDUCTION (NR)

The Noise Reduction processor (NR) will reduce random (“white”) noise making signals more readable which are buried in the noise. It is best to adjust the AGC threshold first, and then enable the Noise Reduction.

The Noise Reduction algorithm uses a correlation based adaptive filter. Noise Reduction increases correlation between input and output with the assumption that noise is uncorrelated and should be canceled out. The threshold adjustment controls the adaptation rate of the filter, so in the case of Noise Reduction, there will be very little audible change while adjusting the threshold unless the noise is changing rapidly or dramatically. The most aggressive settings of Noise Reduction increase the signal to noise ratio but will tend to “color” the signal. The slider should be set for the optimal tradeoff between signal to noise ratio and minimal distortion of the desired signal.
16 HOW TO USE TRACKING NOTCH FILTERS (TNF)

16.1 TRACKING NOTCH FILTER THEORY

With the notch filters found on most receivers, the notch removes an audio frequency after the AGC. When you hear a carrier in the middle of a sideband transmission, you can enable the notch and adjust it to remove the objectionable carrier. The weakness of this type of filter is apparent when the dial frequency is changed. Since the notch is on an audio frequency offset, as the dial frequency is changed the audio frequency of the undesirable frequency is changed and it falls out of the notch, requiring a readjustment of the notch.

With the Tracking Notch Filter™ (TNF), once the frequency has been notched the filter remembers the RF frequency of the objectionable signal. When the dial frequency is changed, the filter is automatically adjusted to maintain the notch on the objectionable frequency. With SmartSDR, you can create many Tracking Notch Filters to notch out local problem carriers or birdies across all bands covered by SmartSDR. The TNFs may be temporary, for only the current session, or they may be remembered permanently.

Note: Individual TNFs are disabled when in the audio passband of a Slice Receiver that is configured for demodulating FM. Because of the frequency dependent nature of FM, a “notch” in the FM passband severely distorts the demodulation.

16.2 CREATING AND ADJUSTING A TRACKING NOTCH FILTER

To create a TNF, click the $$\text{TNF}$$ button on the left side of the Panadapter. This will create a TNF in the center of the Panadapter. You can also right click in the Panadapter or Waterfall on the frequency where you would like the TNF created and select “Create TNF.”

The Tracking Notch Filter will be created on the frequency where the right-click occurred. A TNF will be shown by a greenish vertical line with diagonal yellow stripes.

Once the TNF is created, the TNF may be remembered, deleted or adjusted by right-clicking on the TNF again:
To see details on the current TNF or change its frequency or width, hover your cursor over the TNF. The cursor will change to a 4-way directional cursor and details about the TNF will appear in a callout:

To increase the width of the TNF, left click and then move the cursor up-and-down. To adjust the frequency of the TNF, slide side-to-side.

16.3 TURNING ALL TRACKING NOTCH FILTERS ON OR OFF

To disable all TNFs at the same time, click on the TNF icon in the bar at the bottom on SmartSDR:

When all TNFs are disabled, the TNF icon will “gray out” as shown below. To re-enable all TNFs, just click on the button again.

To remove all TNFs, right click on the TNF icon, then left click on the Remove All TNFs option.
16.4 AUTOMATIC NOTCH FILTER (ANF)

The Automatic Notch Filter automatically applies a Tracking Notch Filter, as described above, to remove constant tones such as carriers and heterodynes from the received audio passband. These filters can be applied to each Slice Receiver as needed.

The slider to the right of the ANF button controls the depth and sensitivity of the filter. Automatic Notch Filters are not affected by the setting of the global Tracking Notch Filter control (section 16.3, Turning All Tracking Notch Filters On or Off).

The Automatic Notch Filter algorithm uses a correlation based adaptive filter. The filter decreases correlation of the input and output since a constant tone is highly correlated and should be canceled out. The threshold adjustment controls the adaptation rate of the filter. If a loud tone is present and you move the receive filter around it, you should hear the tone get canceled at different rates depending on the threshold control setting.
17 USING THE FLEXCONTROL INTERFACE

The FlexControl interface provides a handy physical knob and a set of buttons that can be programmed to perform selected operations in SmartSDR.

17.1 CUSTOMIZING THE FLEXCONTROL INTERFACE

From the “Settings” drop-down menu at the top of SmartSDR, select the “FlexControl” option.

![Settings drop-down menu with FlexControl option](image1)

This will bring up the simple mode FlexControl panel.

![Simple mode FlexControl panel](image2)

The panel resembles the physical appearance of the actual FlexControl to make the programming experience more intuitive. Each of the buttons has a corresponding drop-down menu that allows the user to modify its function.
The different options include:

- **Tune Slice** – When enabled, the knob will tune the active slice
- **Band Zoom** – Zooms out to the current band (then returns upon 2nd use)
- **Segment Zoom** – Zooms to the current band segment (then returns upon 2nd use)
- **RIT (Receive Incremental Tuning)** – When enabled, the knob will tune the RIT of the active slice. Double clicking the button will zero the RIT setting.
- **XIT (Transmit Incremental Tuning)** – When enabled, the knob will tune the XIT of the active slice. Double clicking the button will zero the XIT setting.
- **Slice AF** – When enabled, the knob will adjust the volume of the active slice
- **Master AF** – When enabled, the knob will adjust the master volume control
- **Headphone Volume** – When enabled, the knob will adjust the headphone volume control
- **AGCT (Automatic Gain Control Threshold)** – When enabled, the knob will adjust the AGCT of the active slice.
- **APF (Audio Peaking Filter)** – When selected, double clicking the button will toggle the APF on or off and the knob will adjust the APF level setting.
- **Change Active Slice** – When enabled, this option will sequentially step through all defined Slice Receivers making each one the active slice.
- **Split Active Slice** – Activate the Split option on the active Slice (creating another Slice nearby and setting it to be the Transmit Slice).
- **MOX** – When enabled, pressing this button will key the transmitter
- **RF Power** – When enabled, the knob will set the RF Power output from 0-100.
- **CW Speed** – When enabled, the knob will set the CW Speed in WPM.
- **CWX Macros [1 -12]** – When selected, pressing the button will send the selected CWX Macro
- **None** – no option is assigned to the button

17.2 OPERATING THE FLEXCONTROL

Once you have assigned a control function to a button or the knob, pressing the appropriate AUX button will assign that function to the knob control. As an example, using the image above, AUX1 is assigned to RIT. Pressing AUX1, will cause the LED under AUX1 to illuminate and when you rotate
the knob, it will change the RIT offset. Pressing down on the knob will reassign the knob back to
tuning the active slice.

Double Click Features:

In addition to changing the XIT/RIT offsets using the knob control when the respective assigned AUX
button is pressed once, if you double click the AUX button assigned to RIT or XIT the offset will reset
to 0 Hz. Similar toggle functionality is present in other modes as mentioned in the list above.

17.3 TROUBLESHOOTING ISSUES WITH THE FLEXCONTROL

If the Windows system running SmartSDR cannot detect a FlexControl connected to it, the following
screen is displayed:

![FlexControl not detected message]

If you have your FlexControl physically connected to your PC and you receive the *FlexControl not
detected* message, the problem may be caused by one of the following:

1.) **Is it enabled in the software?** – The control is shown and described in Section 39.3.
2.) **The FlexControl Drivers did not load properly** – The FlexControl drivers are installed when
 SmartSDR for Windows is installed. Under certain rare circumstances, Windows permissions
 issues may prevent the driver from installing properly. Uninstalling and reinstalling SmartSDR
 may solve the problem. If the problem persists, please open a HelpDesk support ticket so that a
 technical support engineer can attempt a manual load of the drivers.
3.) **Serial port conflict** – The FlexControl emulates a serial port via a USB connection which is
dynamically assigned a com port number by Windows. Occasionally Windows fails to recognize
existing com ports if they are virtual, such as the ones created by SmartSDR CAT. When this
happens, Windows can accidently assign the FlexControl to a com port that is already in use,
resulting in both the FlexControl and the applications connected to the virtual com port to stop
working. Manually assigning the FlexControl a com port in a range well beyond what the virtual
com ports are using usually solves the problem. For more information on how to change the com
port assignment for the FlexControl, please refer to the FlexRadio HelpDesk Help Center article
How to Change the Com Port Assignment for a FlexControl.
18 HOW TO USE PROFILES

Profiles allow the user to name and save the state of the radio and recall it later. Profiles can even be exported and restored on another FLEX-6000 Series radio. This facilitates convenient backup of radio configurations and helps IT managers of DXpeditions or contest super-stations test configurations and then install or restore them at a site. Individual operators can also save their favorite settings and then, after others have operated, restore the state of the radio. [Note: Some Graphical User Interface layout settings are not currently stored but may be included in a future version of SmartSDR.]

Profile and persistence are different animals. This is discussed below in section 18.7.

There are three types of profiles: GLOBAL, TRANSMIT and MIC. Global profiles store the state of the radio including the Panadapters and Slices that are open, the mode associated with each slice and all the settings for noise blankers, AGC, filters, etc. This can be thought of as a snapshot in time. Transmit profiles save the transmitter power level, tune power level, transverter power level and the various transmitter delay parameters. MIC profiles save a configuration for a specific microphone or audio source, including the TX filter settings, the MIC selection and level and the DEXP, PROC, DAX, VOX and EQ settings. Both Transmit and MIC profiles are automatically saved when the related controls are changed.

Profiles are far superior to traditional "band stacking" in that you can save as many different configurations as desired and give them a meaningful name for recall.

18.1 MIC PROFILES

MIC profiles manage a set of radio parameters associated with microphones and other audio sources. These include TX filter settings, MIC selection and level, and DEXP, PROC, DAX and VOX settings. A complete list of the parameters is provided in section 19, Importing and Exporting Radio Settings.

The MIC profile can be selected using the Profile Manager, or by selecting it from the drop-down menu which is located just above the MIC gain slider in the P/CW panel.

MIC profiles can be associated with the mode of a Slice Receiver. The MIC profile in effect at any point in time is determined by the mode of the transmit slice, or by a Global profile. Many Slice Receivers may exist, set to different modes, but only one controls the transmitter (for each Station) and that slice determines the MIC profile selection.

To associate a MIC profile with a mode, mode groups are used. LSB and USB are a single mode group (SSB), as are DIGU and DIGL (Digital), FM, NFM and DFM (FM) and AM and SAM (AM). RTTY and each Waveform installed in the radio are treated as a separate mode.

To associate or link a Mic profile to a mode group, set the transmit slice to the mode you wish to link. Then load or save a Mic profile while the transmit slice is in that mode. From then on, whenever the transmit slice is set to that mode the linked Mic profile will be loaded. For example:

1. Slice A (the TX Slice) – Mode is USB
2. Load Default FHM-1 Mic profile. (This Mic profile is now linked to the USB/LSB mode group)
3. Change Slice A to SAM (This loads the default linked MIC profile Default)
4. Load Default PR781 Mic profile. (This Mic profile is now linked to the AM/SAM mode group)
5. Change Slice A to LSB or USB. (This loads the Default FHM-1 Mic profile)
6. Change Slice A to AM or SAM. (This loads the Default PR781 Mic profile).

These MIC profile Mode Group associations are saved/restored within the Preferences.

Because the MIC profiles are automatically saved when changes are made to the associated settings, some may want to save a separate profile with known good settings they can use to return to after testing different settings. Use the Profile Manager (section 18.4) to create a new profile based on the current settings.

MIC profiles are band independent. A MIC profile that is associated with a mode will invoke the same values in any band in which it is used.

The active MIC profile selection is saved per Station. When operating multiFLEX, it is important that if the devices have unique settings that each Station uses its own MIC profile. For example, let’s consider a FLEX-6500 that has 2 Stations connected, one running SmartSDR for Windows and another running a Maestro. If both Stations have the Default MIC profile selected, this will cause confusion when trying to transmit from the Maestro. Consider if the M-MIC1 (Maestro Microphone 1 input) option is selected on the Maestro as that is where your microphone is connected for the Maestro. Since the SmartSDR for Windows Station also has the Default MIC profile selected and it doesn’t have an M-MIC1 option, it will set the Mic Input selection back to something like R-Mic (Radio’s microphone input). To correct this, create a new Maestro MIC profile and use this on the Maestro with the M-MIC1 setting.

NOTE: If a MIC profile is modified, the change will affect all MODES and Global profiles with which the MIC profile is associated.

18.2 TRANSMIT PROFILES

Transmit profiles manage the transmitter power and interlock settings. The power settings are saved by band, while the interlock settings apply to all bands. The power settings include the transmitter power level, tune power level, and ALC. The interlock settings include the TX Delay, PTT Timeout, and the controls for the various transmitter engaged signals. A complete list of the settings is provided in section 19, Importing and Exporting Radio Settings.

NOTE: Power settings are saved for every band in a Transmit profile. To save the appropriate power settings set a slice as the TX Slice. Then open the TX Band Settings from the Settings menu (see section 20).

The Transmit profile can be selected with the Profile Manager, or by selecting it from the drop-down menu which is located just above the TUNE and MOX buttons in the TX panel.

Transmit profiles are linked to the TX Antenna setting in the transmit slice. When the antenna used by the transmit slice is changed, the Transmit profile associated with the new antenna selection is invoked. For example:

1. Slice A is the transmit slice. TX ANT is ANT1
2. Slice B is NOT the transmit slice. TX ANT is ANT2
3. Load **SO2R_TX1** Transmit profile. (This Transmit profile is now automatically linked to ANT1)
4. Set Slice B as the transmit slice.
5. Load **SO2R_TX2** Transmit profile. (This Transmit profile is now automatically linked to ANT2)
6. Set Slice A as the transmit slice. (This loads the **SO2R_TX1** Transmit profile)
7. Change Slice A TX ANT to **ANT2**. (This loads the **SO2R_TX2** Transmit profile)

To associate a Transmit profile with a TX antenna, select the TX Antenna you wish to associate in the transmit slice, then load or save a Transmit profile using the Profile Manager, or select an existing Transmit profile using the drop-down menu.

NOTE: If a Transmit profile is modified, the change will affect all Global profiles with which the Transmit profile is associated.

18.3 GLOBAL PROFILES

Global profiles manage the state of panadapters and slice receivers and the layout of these components on the SmartSDR display. Panadapter settings saved in Global profiles include the number and location of panadapters on the SmartSDR display, frequency ranges, bandwidth and scaling and display parameters. Slice Receiver parameters include the frequency, mode, MIC profile, RX and TX filter settings, DAX channel, audio gain and many others. See section 19 for details.

In addition, Global profiles also record the linking of each TX Antenna in each slice to a Transmit profile, and each Slice Receiver’s mode. Invoking a Global profile therefore creates a set of panadapters and slices, selects a slice to control the transmitter, then invokes the Transmit profile indicated by the selected TX antenna and the MIC profile. Selection of a different slice to control the transmitter may change the selected Transmit and MIC profiles depending on the TX Antenna and Mode selected in the new TX Slice. Similarly, changes to the selected TX antenna or mode within the transmit slice may change the selected Transmit or MIC profiles.

To create or save a Global profile, configure all panadapters and slice receivers to the desired settings. TX Antennas and modes should be set to the desired values. Each TX Antenna that will be used in the Global profile should be selected and then linked to a Transmit profile by selecting the profile in the drop-down menu. Select the mode and MIC profile in each slice receiver. When these adjustments are complete, save the Global profile using the Profile Manager.

Note: Changes made to panadapters and slices are not automatically saved to a loaded Global profile. Changes to existing Global profiles can only be made by manually re-saving the profile using the Profile Manager.
18.4 SAVING AND DELETING PROFILES

From the “Profiles” drop-down select the option “Save Global Profile”, “Create Transmit Profile” or “Create MIC Profile”.

This will bring up one of the following Profile Manager Windows:

There are three tabs at the top of the window. The tab that is selected will correspond to the menu option the user selected. For Global Profiles, type the desired profile name into the text box at the top that says, “New Profile Name” and click save or hit the Enter key on the keyboard to save a new profile. Saving a Global profile saves the Panadapter settings, the CWX settings, and the Slice Receiver configuration. For Transmit or MIC profiles, the process is similar, but you click Create instead of Save. This creates a new Transmit or MIC profile based on the current profile. A Transmit or MIC profile will save only the settings related to the transmitter or microphone. See section 19, Importing and Exporting Radio Settings for details.

Take care when creating a new MIC profile to ensure that the Slice Receiver that is selected to control the transmitter also selects the mode to be associated with the new MIC profile. If this is not the case, the new MIC profile will become associated with the current mode unintentionally.

To create a MIC profile, LSB and USB are a single mode (SSB), as are DIGU and DIGL (Digital), FM, NFM and DFM (FM) and AM and SAM (AM). Each Waveform installed in the radio is treated as a separate mode.

To delete a profile, select the appropriate profile name and click the delete button.
Note: Performing a database reset from the front panel of the radio will delete all non-default profiles. It is recommended that you export your profiles with all options selected before performing a database reset.

18.5 LOADING PROFILES

To load a profile from the Profile Manager Window, select the desired profile and click load or simply double click the profile name.

Global profiles can be quickly loaded from the “Profiles” drop-down menu. The saved profiles will show up under the “Import/Export Profiles…” selection.

Transmit profiles can be quickly selected from the drop-down menu on the Transmit Panel above the “Tune” and “MOX” button, as shown below:
MIC profiles can be quickly selected from the drop-down menu on the P/CW Panel above the MIC gain slider, as shown below:

![MIC profiles drop-down menu](image)

The user can leave the Profile Manager open to the side of the SmartSDR window and instantly switch configurations by double clicking the desired profile.

Note: You can load profiles created by different FLEX-6000 models without any adverse interactions. If the target radio model does not have the same resources as the source radio, such as the number of available Panadapters and Slices, the target radio's resources and capabilities will take precedence.

18.6 DEFAULT PROFILES

Several default profiles are included in the radio software. These profiles provide a basic level of operation for the radio and are listed in the illustrations in section 18.4 above.

A default global profile, SO2RDefault, provides an example setup of the radio for SO2R operation (see section 38.3.1). The default Transmit profiles provide common transmitter settings for “barefoot” operation. The default MIC profiles provide example values for microphone level, transmit filters, DEXP settings, voice processor settings, equalization settings and other settings for several popular microphones and headsets.

Default profiles can be modified or deleted from the radio using the Profile Manager but will be restored if the radio is reset to the factory defaults (see section 40).

Note: Default profiles can be modified. Resetting any profile (including the Defaults) will result in the original Default settings though.

18.7 COMPARING PROFILES AND PERSISTENCE

Profiles are different from persistence. As described above, profiles are a way to save and restore a complete radio configuration and then return to that configuration later. Global Profiles require
action on your part to both save and restore but are a very quick way to put the radio in exactly the state you want. MIC and Transmit profiles both save automatically as settings are changed.

Persistence, always enabled on your Signature Series radio, remembers settings from band to band without your direct action so that when you return to a band, your settings are restored. For example, if you are operating on 20m and set the Slice frequency to 14.185, then go to 10m and set the Slice frequency to 28.1 MHz and then go back to 20m, persistence will return your Slice to 14.185 MHz. Resetting the radio to the factory settings (see section 40) will clear the persistence settings.

Persistence remembers many settings as shown in the following table:

<table>
<thead>
<tr>
<th>Radio</th>
<th>Mode</th>
<th>Microphone</th>
<th>Slice</th>
<th>Panadapter</th>
<th>Waterfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTT Timeout</td>
<td>Selected microphone</td>
<td>Bias enabled</td>
<td>Frequency</td>
<td>Center Frequency and Bandwidth</td>
<td>Auto-black enable and level</td>
</tr>
<tr>
<td>TX1/2/3/Acc enabled and delay</td>
<td></td>
<td>Boost enabled</td>
<td>Filter limits</td>
<td>RX Antenna and Loop settings</td>
<td>Scroll speed (line duration)</td>
</tr>
<tr>
<td>TXREQ enabled and polarity (RCA & ACC)</td>
<td></td>
<td>Accessory Mix enabled</td>
<td>Mode (USB, CW, etc.)</td>
<td>Preamplifier setting</td>
<td>Gradient selection</td>
</tr>
<tr>
<td>Speaker volume and mute</td>
<td></td>
<td></td>
<td>RX Antenna</td>
<td>Display min/max dBm</td>
<td>Scrol speed (line duration)</td>
</tr>
<tr>
<td>Headphone volume and mute</td>
<td></td>
<td></td>
<td>TX Antenna</td>
<td>DAX channel</td>
<td>Gradient selection</td>
</tr>
<tr>
<td>PC Audio enabled</td>
<td></td>
<td></td>
<td>TX state (is this the transmit slice?)</td>
<td>Squelch settings (for FM)</td>
<td>Gradient selection</td>
</tr>
<tr>
<td>Processor enabled and setting</td>
<td></td>
<td></td>
<td>DAX channel</td>
<td>FM tone mode</td>
<td>Color gain</td>
</tr>
<tr>
<td>Selected microphone</td>
<td></td>
<td></td>
<td>Mute state</td>
<td>FM repeater offset</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Audio level, pan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WNB, NR, ANF, APF states and levels</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diversity state / Slice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FM tone mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FM repeater offset</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Persistence remembers many settings as shown in the following table:
19 IMPORTING AND EXPORTING RADIO SETTINGS

From the “Profiles” drop-down menu select “Import/Export Profiles”

This will bring up the Import/Export window:

Select the appropriate tab for import or export controls. The **Browse** button on the **Import** tab will bring up a File Explorer window that can be directed to the file to import. The user can check the items that they wish to import/export by clicking on one of the circles next to the setting.
The available options are:

- Global Profiles (Basic radio state settings, see below)
- TX Profiles (Phone transmit settings, see below)
- MIC Profiles
- Memories (Frequency memories)
- Preferences (Slice and Band persistence. See section 18.7)
- TNF (Saved or permanent tracking notch filter parameters)
- XVTR (Transverter band settings)
- USB Cables

When an option is selected, a checkbox will display inside the circle. Checking/unchecking the circle next to Select All will select/deselect all the options. Click Import or Export to complete the operation. Clicking Export will prompt the user to save the file to a specified location.

Importing profiles adds user defined Global, Transmit and MIC profiles to the profiles in the radio at the time of import. If an imported profile has the same name as a profile already in the radio, the imported profile will replace the profile in the radio. This is also true for default profiles.

Default profiles can be modified by the user and exported using the tools described above. Resetting the radio to “factory state” (see section 40) will remove all user defined profiles and install the default profiles. However, the default profiles may then be overwritten by importing previously exported profiles.

NOTE: When importing preferences, existing preferences may conflict with the current state of the radio. To avoid a situation where the current state of the radio would overwrite the preferences just imported, all resources such as Panadapters, Slices, etc. will be closed during an import of preferences and then will be reopened after the import. Some settings may change in favor of the imported preferences.
Global Profile Fields

<table>
<thead>
<tr>
<th>PANADAPTER</th>
<th>CWX</th>
<th>SLICE</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Frequency</td>
<td>CWX Macro 1</td>
<td>Frequency</td>
<td>RX EQ Enable</td>
</tr>
<tr>
<td>XVTR Frequency</td>
<td>CWX Macro 2</td>
<td>XVTR Frequency</td>
<td>RX EQ Levels</td>
</tr>
<tr>
<td>XVTR Key</td>
<td>CWX Macro 3</td>
<td>XVTR Key</td>
<td>Full Duplex ON/OFF</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>CWX Macro 4</td>
<td>Diversity</td>
<td></td>
</tr>
<tr>
<td>RX Antenna</td>
<td>CWX Macro 5</td>
<td>Mode</td>
<td></td>
</tr>
<tr>
<td>Loop A Enabled</td>
<td>CWX Macro 6</td>
<td>RX Filter Low</td>
<td></td>
</tr>
<tr>
<td>Loop B Enabled</td>
<td>CWX Macro 7</td>
<td>RX Filter High</td>
<td></td>
</tr>
<tr>
<td>RF Gain</td>
<td>CWX Macro 8</td>
<td>RX Ant</td>
<td></td>
</tr>
<tr>
<td>Min dBm</td>
<td>CWX Macro 9</td>
<td>TX Ant</td>
<td></td>
</tr>
<tr>
<td>max dBm</td>
<td>CWX Macro 10</td>
<td>Parent Panadapter</td>
<td></td>
</tr>
<tr>
<td>FPS</td>
<td>CWX Macro 11</td>
<td>Is this the TX Slice</td>
<td></td>
</tr>
<tr>
<td>Averaging ON/OFF</td>
<td>CWX Macro 12</td>
<td>DAX Channel</td>
<td></td>
</tr>
<tr>
<td>Weighted average ON/OFF</td>
<td></td>
<td>Is muted?</td>
<td></td>
</tr>
<tr>
<td>DAX IQ Channel</td>
<td></td>
<td>Audio Gain</td>
<td></td>
</tr>
<tr>
<td>Waterfall black level</td>
<td></td>
<td>Audio Pan</td>
<td></td>
</tr>
<tr>
<td>Waterfall color gain</td>
<td></td>
<td>Is locked?</td>
<td></td>
</tr>
<tr>
<td>Waterfall line duration level</td>
<td></td>
<td>AGC Mode</td>
<td></td>
</tr>
<tr>
<td>Waterfall autoblack ON/OFF</td>
<td></td>
<td>AGC Threshold</td>
<td></td>
</tr>
<tr>
<td>Waterfall gradient</td>
<td></td>
<td>AGC Off Level</td>
<td></td>
</tr>
<tr>
<td>Waterfall Type</td>
<td></td>
<td>NR Enabled</td>
<td></td>
</tr>
<tr>
<td>Show TX in Waterfall</td>
<td></td>
<td>NR Level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NB Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NB Level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANF Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ANF Level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>APF Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>APF Level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Squelch Enabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Squelch Level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FM Tone Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FM Tone Value</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FM Repeater Offset</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TX Offset Frequency</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FM Repeater Offset Direction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diversity Child AGC Mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diversity Child AGC Level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diversity Child Audio Gain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diversity Child RX Ant</td>
<td></td>
</tr>
</tbody>
</table>
MIC Profile Fields
- TX Filter Low
- TX Filter High
- Mic Selection
- Mic Level
- Mic Boost
- Mic Bias On/Off
- DEXP Enable
- DEXP Level
- PROC Enable
- PROC Level
- Monitor Enable
- Monitor Level
- Monitor Pan (L/R)
- DAX Input Enable
- VOX Enable
- VOX Level
- VOX Delay
- Show MIC Meter in RX Enable
- AM Carrier Level
- TX EQ Enable
- TX EQ Levels (all frequencies)

TX Profile Fields

<table>
<thead>
<tr>
<th>Interlock</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX Delay</td>
<td>Hardware ALC Enabled</td>
</tr>
<tr>
<td>PTT Timeout</td>
<td>Tune Level</td>
</tr>
<tr>
<td>PTT Inhibit</td>
<td>Power Level</td>
</tr>
<tr>
<td>ACC TX Request Enable</td>
<td>XVTR Tune Level</td>
</tr>
<tr>
<td>RCA TX Request Enable</td>
<td>XVTR Power Level</td>
</tr>
<tr>
<td>ACC Polarity</td>
<td>RCA Polarity</td>
</tr>
<tr>
<td>ACC TX Relay Enable</td>
<td>ACC TX Relay Delay</td>
</tr>
<tr>
<td>TX Relay 1 Enable</td>
<td>TX Relay 1 Delay</td>
</tr>
<tr>
<td>TX Relay 2 Enable</td>
<td>TX Relay 2 Delay</td>
</tr>
<tr>
<td>TX Relay 3 Enable</td>
<td>TX Relay 3 Delay</td>
</tr>
<tr>
<td>TX Relay 3 Delay</td>
<td></td>
</tr>
</tbody>
</table>
20 TX BAND SETTINGS

The TX Band Settings window, introduced in SmartSDR v3.0, is a one-stop shop for all the by-band Transmit settings. This makes it easy to see all the settings for each band (including XVTRs) and to compare them visually in one place.

The settings on the TX Band Settings shows the active settings for the current TX Profile (shown in the title bar). Changes to the form are saved immediately to the profile. Below you will find a description of each field:

Band: The settings across each row apply to the band in the first column.

RF PWR2: The RF Power output setting. Sets the output power for typical transmissions.

Tune PWR2: The Tune Power output setting. Sets the output power to use when using TUNE.

PTT Inhibit: Inhibits transmission on the band when selected.

ACC TX: When selected, the ACC TX Pin on the ACC connector (back panel) is pulled to ground during transmit.

RCA TX Req: Enables the RCA TX Request line when selected. When active, the RCA TX Req line must be in the appropriate state (depending on the polarity set on the Settings -> TX Tab) to allow for transmission.

The control on the front panel will modify this value for the current band (and vice versa).
ACC TX Req: Enabled the ACC TX Request line when selected. When active, the ACC TX Req line must be in the appropriate state (depending on the polarity set on the Settings -> TX Tab) to allow for transmission.

RCA TX1/2/3: When selected, the TX1/2/3 RCA output is pulled to ground during transmit.

HWALC: Enables the RCA Hardware ALC circuit when selected.

Note: For the timing settings for several of these controls which apply to all bands, see the Settings -> TX Tab (see section 39.6).
The multiFLEX Dashboard shows the connected Stations and which one is set as the Local PTT.

![MultiFLEX Dashboard](image)

Each Station application is listed along with the Station Name for easy identification.

Local PTT: The Local PTT Station is the chosen Station context to use when using a hardware PTT such as a footswitch or CW paddles. The Local PTT Station is clearly identified with the checkmark. This setting is a conflict resolver and is necessary since multiple Stations can be connected to the radio at once.

Click the **Enable** button to select Local PTT for your Station (in this case, FLEXDEV4).
HOW TO USE PC AUDIO

SmartSDR for Windows can be operationally “decoupled” from the radio hardware by playing Slice Receiver audio through the default PC speakers (playback device) and using the default PC microphone (recording device) to make phone QSOs. This feature, known as PC Audio, streams compressed audio over the IP connection between the radio and the SmartSDR client on the PC, eliminating the need for the speakers and microphone to be directly connected to the radio hardware.

To provide diagnostic capabilities for PC Audio, two features were added to SmartSDR. The Network Quality Monitor and Audio Streaming Monitor provide a visual indication of a network’s capability to adequately stream audio to the PC, which is essential when using a wireless link between the client PC and the radio hardware.

PC Audio and SmartLink use a compressed audio format suitable for transmission over the local area network. Compression is accomplished with the Opus codec. Opus is an audio coding format developed by the Internet Engineering Task Force (IETF) and has been standardized in RFC 6716. Although technically lossy, Opus provides excellent fidelity with minimal bandwidth usage.

21.1 PLAYING SLICE AUDIO USING THE DEFAULT PLAYBACK DEVICE

As noted above, the PC Audio feature uses the Windows default Playback and Recording sound devices. Clicking on the **PC Audio** button located in the top bar of the SmartSDR console enables streaming of slice audio from the radio to your computer’s default playback device (speakers or headphone).

![PC Audio](image)

When PC Audio streaming is enabled, the **PC Audio** button will be highlighted.

![PC Audio Highlighted](image)

Hovering your mouse cursor over the **PC Audio** button will trigger a tooltip that shows which sound device will be used when you press the button.

Depending on the order that audio devices have been added to your PC, the device you wish to use for playback might not be selected as the default.

Note: When the DAX audio drivers were installed on your PC, Windows may have reassigned the default sound device to one of the DAX audio devices. This will result in the PC Audio button being grayed-out since a DAX device cannot be used as a sound device for PC Audio. See section 21.3 for instructions for reconfiguring the default audio devices.
21.2 TRANSMITTING USING THE DEFAULT RECORDING DEVICE

To transmit using a microphone connected to the PC, select the PC option from the MIC input menu. This automatically selects the Windows default recording device for your MIC input.

![Image of MIC input menu]

Note: When PC is selected as the MIC input, transmit can only be initiated by the MOX button in the Transmit panel, or by VOX. The front and rear panel PTT will override the PC MIC input and transmit using the last hard-wired MIC input that was used (MIC, BAL, LINE or ACC).

21.3 CONFIGURING THE DEFAULT WINDOWS SOUND DEVICES

As noted above, PC Audio uses the Windows default Playback and Recording sound devices for the remote audio and PC mic audio I/O selections. When plugging a headset into a sound card or USB based audio device into a PC, Windows will automatically designate the newly inserted device as the default sound device, and after a short time will activate it, making PC Audio a "plug-n-play" feature. For example, your speakers will be deactivated while you have your USB headset plugged in.

However, there are cases when you may need to manually set the appropriate sound device as the default. Please refer to the HelpDesk article [How To Set The Windows Default Playback & Recording Audio Device](https://helpdesk.flexradio.com/hc/en-us/articles/203731345-How-To-Set-The-Windows-Default-Playback-Recording-Audio-Device) for a detailed explanation how to accomplish this task.

The following is an example of setting the default Playback device. To start, right-click on the speaker icon in the system tray and select Open Sound settings as shown below:

![Image of speaker icon with Open Sound settings option]
Windows will display a window like this:

![Sound Configuration Window]

To choose a device to play the radio audio, click on the Choose your output device menu (outlined in red) and select the device. Similarly, choose the input device from the Choose your input device menu. A more detailed control panel is available if you click on the Sound control panel button, outlined above.

21.4 PTT OVERRIDE WHEN OPERATING LAN REMOTE

When operating in a non-DIGx mode, using a hardware PTT such as the RCA PTT input on the back panel or the front panel microphone, local activation of the PTT will override the remote PTT. This feature allows the user at the radio to override the remote input with a PTT switch connected directly to the radio.

21.5 OPERATING CW WHEN USING PC AUDIO

When operating in CW mode while PC Audio is enabled, the CW must be sent with either a key or paddles directly connected to the radio or by using CWX or Maestro. At present, there is no feature to attach a key or paddles to the PC to operate CW remotely.

Note: If PC Audio is enabled, CW sidetone is only available when using CWX. Macros sent via a logger such as N1MM will not be heard in this configuration. Use audio from the radio to address this.
21.6 MONITORING REMOTE AUDIO AND NETWORK PERFORMANCE

There are two ways to monitor the performance of the network while using PC Audio. The first is with a convenient Network Health Indicator display in the lower right of the SmartSDR display. The second is a detailed Network Diagnostics display.

21.6.1 Network Health Indicator

The network health indicator is a quick way to determine if your network connection is performing well enough to properly operate your radio for both remote and local modes of operation. As shown below, the indicator is a series of “bars”, usually green, indicating error free streaming at a sufficient rate.

![Network Health Indicator](image)

If network errors do occur, the number of illuminated bars in the indicator will decrease as shown in the following series of images. If the indicator is green, the radio should perform properly. If the indicator changes to yellow, occasional audio dropouts and screen freezes may occur, but the radio will continue to operate. Once the health indicator drops to red bars or no bars, the link is not reliable enough to maintain communications.

![Network Health Indicator](image)

When a radio is connected via SmartLink, the Network Health Indicator operates, showing the quality of the Internet connection to the radio, but with relaxed parameters that allow for the expected longer transit time for messages.

21.6.2 Network Diagnostics

When LAN issues occur with SmartSDR, it is useful to have additional details to aid in diagnosing the problem. A Network Diagnostics feature provides this information. To access this information, click on “Network” under the settings drop-down menu or click on the Network Health Indicator bar graph.

![Network Diagnostics](image)

The Network Diagnostics window shows several different types of diagnostic data. There is a Network Status indicator that describes a summary of the quality of your network connection.
Latency (RTT) is the round-trip time in milliseconds for a keepalive packet to be sent between SmartSDR and the radio hardware. A lower number indicates better network quality. On a LAN, Latency (RTT) should be no more than a few milliseconds and should not vary greatly. For a wireless network link, this number may be much higher and can vary depending on factors inherent to wireless network links such as signal attenuation and multipath reflections. Latency of SmartLink connections will usually be higher and depend on the network and the characteristics of the client network and the radio network (i.e. typical internet routing). **Max Latency (RTT)** is the greatest observed value of Latency (RTT). If this number is much higher than the real-time Latency (RTT) values, this indicates a network link that has a lot of quality variability, which in general is not desirable.

The **Remote RX** and **TX Rates** are the rates, in kilobits per second, of PC Audio receive and transmit audio. If you are not using the PC Audio feature, these values will be zero.

Additionally, there is a listing of the number of dropped packets and the total number of data packets sent between the radio and the client since the Network Diagnostic data has been reset or since SmartSDR started. On a healthy LAN connection with sufficient bandwidth, you should not experience any dropped packets. When using a wireless network connection, dropped packets cannot be avoided and you may observe the occasional dropped packet. However, if you observe a rising number of dropped packets, greater than 0.10% after the radio has been running for several minutes, this is an indication that your network is not sufficient to provide error free operation. You can reset this count by right-clicking on this screen and selecting **RESET**.
22 HOW TO OPERATE MULTIFLEX

As discussed in the introduction to multiFLEX (section 4), multiFLEX allows multiple operating positions called Stations to operate the radio concurrently. Because multiFLEX offers each user their own view of the radio, the operating experience is familiar. The stations may be on the same LAN or SmartLink or a combination.

Operating in CW, SSB, AM, FM or Digital works virtually the same as it does with a single operator as described in the following sections. To use multiFLEX, you simply connect more than one Station to the Radio. Each Station will have its own Slice A/B/etc. and its own TX Slice on its own Panadapter.

22.1 SHARED RESOURCES

Because several of the key resources in the radio such as the Transmitter, SCUs, Slices, and Panadapters are finite, some means of coordination may be helpful when operating multiple Stations concurrently with multiFLEX.

22.1.1 Single Transmitter

There is a single transmitter in the radio. This means that only a single Station can transmit at a time. Conflicts are resolved using a First One Wins system. This means that if you have Station 1 and Station 2 connected to the same Radio, if Station 1 begins to transmit, Station 2 must wait until Station 1’s transmission is complete in order to make a transmission. The same is then true for Station 1 while Station 2 is transmitting – it must wait until Station 2 is finished transmitting before it can transmit again.

To clearly indicate when another Station is transmitting, we have added an inverted TX icon.

Hovering over the icon will show which Station is transmitting.

22.1.2 Available SCUs

The total available number of SCUs (Spectral Capture Units – see 11.2.1) is determined by the radio model according to the following table:

<table>
<thead>
<tr>
<th>Model</th>
<th>FLEX-6700</th>
<th>FLEX-6600</th>
<th>FLEX-6500</th>
<th>FLEX-6400</th>
<th>FLEX-6300</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCUs</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

When the RX Antenna selection is made on a Slice or Panadapter, this associates that Antenna Port (such as ANT1, ANT2, RX A, etc.) with an SCU. If there is no available SCU when changing Antenna Ports, an existing SCU must be moved to the newly selected RX Antenna. Put another way, a single SCU radio can only listen on a single RX Antenna Port at a time. This means that if two Stations are connected to a FLEX-6500 and both are using ANT1 for RX, if one of the Stations changes the RX Antenna to ANT2, all Panadapter and Slice resources on both Stations will move to ANT2.
The situation is easier to handle when using a dual SCU model like the FLEX-6600 or FLEX-6700. This allows up to 2 RX Antennas to be in use at a time. Even with two SCUs, they can still run into situations where both SCUs are in use and changing an antenna may switch resources on any Stations that were using the original Antenna Port that is being changed. This sharing will likely be familiar to those that have operated a FLEX-6000 radio, but it can be confusing if your RX Antenna settings change as a result of settings that another Station has chosen.

Similarly, the Gain setting (Preamp/Attenuator) for the SCU is shared just as it is in a single Station setup. However, it may not be as obvious why the Gain setting is changing when another Station changes it unless it is understood that the SCUs are a shared resource.

22.1.3 Total Available Slices and Panadapters

The total available number of Slices (see 11.2.2) and Panadapters (see 11.2.3) is determined by the radio model according to the following table:

<table>
<thead>
<tr>
<th>Model</th>
<th>FLEX-6700</th>
<th>FLEX-6600</th>
<th>FLEX-6500</th>
<th>FLEX-6400</th>
<th>FLEX-6300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panadapters</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Slices</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

multiFLEX allows these resources to be split across multiple Stations in a flexible manner. One station on a FLEX-6600 might have 3 Slices in use while another has 1 Slice. When all the Slices are in use, a Slice must be closed before another will be allowed to be opened. The same rules apply to Panadapters and Waterfall displays. This mean that on a FLEX-6500, if two Stations are connected and Station 1 opens four Panadapters, Station 2 will not be able to open any Panadapters until one or more Panadapters on Station 1 are closed thus freeing up those shared resources.
22.1.4 Hardware PTT Inputs – Introducing Local PTT

In a system with multiple Stations connected, it isn’t immediately clear what should happen when a Hardware PTT is used with the Radio. Take for example a FLEX-6600 with 2 Stations connected: Station 1 using SmartSDR for Windows is called FLEXDEV4 and Station 2 is using his FLEX-6600M Front Panel. In this scenario, both Stations are being operated by the same person in the vicinity of the radio. Let’s say that the operator reaches over and keys his CW paddle. Where should the radio begin transmitting? Remember that each of the Stations has its own concept of a TX Slice.

To help resolve such conflicts, we have added a Local PTT designation in the multiFLEX Dashboard.

![multiFLEX Dashboard](image)

The multiFLEX Dashboard can be opened using the Settings -> multiFLEX option in the menu on the Main Window. As shown, the 6600M Front Panel is currently set at the Local PTT. This is where the radio will transmit if a Hardware PTT such as CW paddles, a footswitch plugged into the RCA PTT port, etc. are used.

To change the Local PTT to your station, simple click the Enable button and the Local PTT checkmark will move to your station.

NOTE: When there is only a single Station active, it will automatically be set as the Local PTT.
23 HOW TO OPERATE CW MODE

To use SmartSDR in CW mode, select CW in the slice control panel. This will bring up the CW specific controls in the transmit panel, and show the narrower CW receive filter presets.

The CW display is slightly different from the SSB display. In CW mode, the slice carrier indicator line is in the center of the receiver passband. This coincides with the CW carrier frequency. It shows exactly the location of your transmitted carrier. The pitch of received CW signals depends on the value of the Pitch control in the CW Transmit Control Panel (see section 41.7.2) and the distance of the CW carrier from the tuned frequency.

23.1 HOW TO OPERATE CW IN SPLIT MODE

Many DXpeditions prefer to operate in split mode, where they transmit on one frequency, but listen on another, up or down a few kilohertz. To do this in SmartSDR, add a second Slice Receiver to the Panadapter to use as your secondary frequency. To add a slice, click the SPLIT button in the slice receiver. Your Panadapter display should look like this:
Slice Receiver A should be tuned to the DX station’s transmitting frequency. Slice Receiver B should be selected as the active slice, so you can tune your transmitter to the DX station’s listening frequency.

If you prefer, you can use the slice audio controls to pan the slice audio so one receiver is in your left ear and the other is in your right ear. A single click on the L or R will move the control one step to the left or right. If the control is in the center, clicking on the R will move the control all the way to the right. Clicking on the L will move the control back to the center. Clicking on the L again will move the control all the way to the left.

23.2 CW TRANSMITTING

To transmit in CW mode using the keyer built-into the Flex-6000 radio, you will need either a straight key or an iambic paddle. Refer to the FLEX-6000 Hardware Reference Manual for wiring instructions.

To use a straight key, uncheck the IAMBIC control in the CW transmit panel. The BREAKIN control allows automatic PTT when the key is pressed. The Delay slider sets the PTT hold time for break-in in milliseconds. It can be set anywhere from zero (full QSK), to 2000 milliseconds (2 seconds). See section 41.7.2 for details about these controls.

Note: When the transceiver is in QSK mode, reception occurs through the pre-selector which is connected directly to the receiver’s analog to digital convertor (ADC). This provides the lowest loss path to the ADC. Transmission with the ATU enabled sends the RF from the power amplifier through the ATU before reaching the antenna connector. To avoid the ATU loading the receiver during QSK operation, QSK is not available for single antenna ATU operation. If the ATU is required during QSK operation, a separate receive antenna port (such as RX-A, RX-B, XVTR-A or XVTR-B) must be employed.

23.3 USING THE BUILT-IN KEYER

The radio has a built-in iambic keyer that can be used either as iambic “A” or iambic “B”. Controls for the keyer are found on the Phone/CW tab of the Radio Setup panel. See section 39.7 for details about these controls.
The keyer speed can be set between 5 and 100 WPM using the Speed control in the CW transmit panel. The IAMBIC selector must be enabled to use the built-in keyer. The Sidetone control will increase or decrease the sidetone volume in the speakers and headphones.

23.4 HOW TO OPERATE QRQ (HIGH SPEED) CW WITH QSK

All FLEX-6000s are capable of full QSK operation. To achieve the full benefit of QSK, the delay control on the CW Transmit Control Panel must be set to zero, allowing the transmit/receive switching to occur immediately upon release of the key. In QSK mode the FLEX-6000s use a very fast reed relay for CW T/R switching, but at higher CW speeds (above 30 WPM) better inter-element receiving results are obtained by using two antennas, one for transmitting and another for receiving. Refer to section 29.5, Antenna Options for PIN Diode QSK Operation for information on how to configure separate transmit and receive antennas. Full break QRQ is available only in the FLEX-6600/M and FLEX-6700 models.

23.5 HOW TO CONNECT AN EXTERNAL KEYER USING THE FSK/KEY INPUT ON THE ACCESSORY CONNECTOR

In CW mode, the FSK/Key input on the rear panel accessory connector (pin 4) can be used as a straight key input. This is useful if you wish to attach an external keyer, such as a K1EL WinKeyer, microHAM microKEYER, or another contest-oriented interface. This input is always active and is not affected by the FLEX-6000 internal keyer settings. It’s therefore possible to use both the external keyer, and the internal keyer at the same time.
24 HOW TO OPERATE SINGLE SIDEBAND MODE (SSB)

To use SmartSDR in SSB mode, select either USB or LSB in the slice mode control panel. This will bring up the SSB specific controls in the transmit panel and show the associated receive filter presets. The image above shows the Slice Receiver in USB mode. Conventional USB or LSB settings are automatically selected for each band when the band selection panel is used.

To select the opposite SSB mode, click on the mode indicator as shown above. In this example, LSB can then be selected from the drop-down menu to the left of the USB indicator.

In SSB modes, the slice carrier indicator line will be located to the left of the receiver passband for USB and to the right for LSB. It shows exactly the location of your transmitted SSB suppressed carrier frequency. If the slice is the active slice, the carrier indicator line will be displayed in yellow with a triangular arrow at the top. All other Slices are displayed with no arrow and have red carrier indicators.

24.1 HOW TO SELECT THE SSB RX FILTER BANDWIDTH

Standard SSB receive filter bandwidths from 1.6K to 4.0K can be selected from the drop-down panel under the mode selection button as shown below. Custom bandwidths can be adjusted either by clicking and dragging the side of the filter display on the Panadapter or by using the filter control enabled by hovering the mouse at the bottom of the carrier indicator.
24.2 HOW TO OPERATE SSB IN SPLIT MODE

Many DXpeditions prefer to operate in split mode, where they transmit on one frequency, but listen on another, up or down a few kilohertz. To do this in SmartSDR, you must add a second Slice Receiver to the Panadapter to use as your secondary frequency. To add a slice, click the SPLIT in the slice receiver. A second slice receiver will be added. Your Panadapter display should look like this:

![Panadapter Display]

Slice Receiver A should be tuned to the DX station’s transmitting frequency. Slice Receiver B should be selected as the active slice, so you can tune your transmitter to the DX station’s listening frequency.

![Slice Audio Controls]

If you prefer, you can use the slice audio controls to pan the slice audio so one receiver is in your left ear and the other is in your right ear.

24.3 HOW TO CONFIGURE THE AUDIO CONTROLS FOR PHONE MODES
The microphone connections vary by radio model. On the FLEX-6300, FLEX-6500 and FLEX-6700 a suitable microphone can be connected to the 8-pin front panel connector. On the FLEX-6400/M and FLEX-6600/M a microphone can be connected to the rear panel 1/8th inch TRS jack. On the FLEX-6500, FLEX-6600/M and FLEX-6700 a microphone can also be connected to the rear panel balanced input. See the FLEX-6000 Hardware Reference Manual or the FLEX-6400/6600 Hardware Reference Manual for more details. In the transmitter control panel, select “MIC” for the 8-pin or 1/8th inch TRS jack input or “BAL” for the balanced microphone input.

In the transmitter control panel, select which input is desired:

- “MIC” selects the 8-pin or 1/8th inch TRS jack input
- “BAL” selects the balanced microphone input
- “LINE” selects the balance microphone input, but disables the +20 dB preamp
- “ACC” selects the rear panel accessory jack
- “PC” selects the Windows Default Recording Device in the host computer

See section 35.1.6, DAX TX Channel and Microphone Interaction, for information about coordinating DAX TX channel usage with microphones.

NOTE: If the DAX button above has been selected and PTT is initiated through CAT, audio will be used from the DAX source rather than the currently selected microphone input. If, however, a microphone PTT is depressed, the selected microphone will be used for input. This allows the operator to switch between a digital audio source and voice audio quickly.

NOTE: With multiFLEX, the microphone PTT (and all other hardware PTT sources) will use the Local PTT Station to transmit (see section 21).

NOTE: When PC is the selected MIC input, transmit can only be initiated by the MOX button or VOX. The front or rear panel PTT will always override the PC MIC input and transmit using the last hard-wired MIC input that was used (MIC, BAL, LINE or ACC).

24.3.1 Setting the Transmit Filter Bandwidth

The transmit bandwidth of a single sideband is determined by the Low Cut and High Cut bandwidth controls found on the Transmit Control panel. The bandwidth is adjustable up to 10 KHz in 50 Hz steps. The transmit bandwidth is double for symmetric sideband modes such as AM.
There are two indicator components of the microphone or input Level meter that show the actual audio input level. The leftmost component is a solid bar indicating the average input level and the smaller box-like component farther to the right of the average input level bar is the peak level indicator. The Level meter indicator bars also utilize three colors to visually indicate the input level range. Signals up to -10 dB are shown in green. Signals levels between from -10 and 0 dB are shown in yellow. Any signal level that is greater than 0 dB is shown in red.

When setting up your microphone audio for optimal modulation, adjust the input gain so that the peak level indicator is peaking just BELOW the 0 dB on voice peaks. It is very important that your peak level indicator never exceed 0 dB and turn red at any time. A red peak level indicator indicates over-driven or “clipped” input audio levels resulting in audio distortion. The input ALC is active, but excessive input signal levels may result in input signals that can exceed 0 dB. If you see the peak level indicator turn red at any time, turn down the audio input level until you no longer see the peak level indicator turn read.

The compression meter indicates the amount of compression provided by the speech processor based on the PROC setting and the input gain level. This meter is informational only and is not used in setting microphone levels.

24.3.2 Operating the Speech Processor

The speech processor implements the W9GR Controlled Envelope Single Sideband (CESSB) peak limiting algorithm in SSB, AM and FM modes. The controls are highlighted below in the red square. The processor may be on or off and has three different settings when enabled. In the NOR or normal setting, the processor provides minimal additional gain and simply prevents audio peaks from clipping or producing power greater than the set level. In the DX setting, more gain is provided to the audio to increase the overall sideband envelope which results in a stronger signal that may be more readily heard at a distance. The DX+ setting adds even more gain increasing your talk power or “punch” without incurring significant audio distortion. DX+ is most effective if you increase the low-cut TX filter to between 200-400 Hz to concentrate your talk power in the audio frequency range that has the greatest intelligibility.

The recommended setting is to leave the speech processor enabled and in the NORmal or DX position.
24.3.3 How to Configure the Equalizer (EQ)

The Transmit Equalizer control panel is illustrated above with the TX and ON buttons highlighted. With these buttons selected, the graphic equalizer can be optimized for different microphones and operating styles such as DX, contesting and SSB. The sliders provide a +/- 10 dB adjustment range over eight octaves. The settings shown above provide very good audio quality for many dynamic microphones.

In a similar fashion, the Receive Equalizer is enabled with the RX and ON buttons. With these buttons selected, the graphic equalizer can be optimized for different listening conditions and operating styles. The sliders provide a +/- 10 dB adjustment range over eight octaves.

24.3.4 How to Configure VOX

Press the VOX button to enable voice operated transmit operation and adjust the VOX gain slider to adjust the VOX sensitivity. Sensitivity should be adjusted to the minimum that allows reliable keying by the voice without keying from other room noises. VOX Delay sets the hang time before the transmitter unkeys after you stop speaking. The delay should be set to be comfortable for the style of operation desired. See section 35.1.6, DAX TX Channel and Microphone Interaction for details concerning the interaction of VOX and the DAX TX channel.

24.3.5 Monitor Mode Operation

Monitor mode is enabled by engaging the MON button so that the monitor level may be controlled by the adjacent slider.
The MON feature allows for monitoring of the processed audio prior to the final brick wall filtering and ALC limiting, compression and equalization, allowing the operator to listen to the transmitted audio in “real time” with minimal latency or delay. However, since the monitor audio bypasses the signal processing stages, the audio heard in the monitor is not the same as what is being transmitted and therefore is not suitable for determining the over the air quality of your transmitted signal.

NOTE: When operating in multiFLEX with multiple Stations connected, when the MON is on, the transmit audio will be heard from whichever Station is transmitting. The audio will be mixed with any other receive audio provided that Full Duplex (FDX) is enabled.

24.3.6 How to Configure the Downward Expander (DEXP)

The Downward Expander reduces the microphone input gain during the quiet periods between spoken words, eliminating extraneous background noise. This improves the apparent signal to noise ratio of your transmitted audio by “soft gating” ambient room noise between words.

To adjust the DEXP, Enable DEXP and move the DEXP Threshold slider to 0. While transmitting, and listening with MON without speaking, adjust the DEXP Threshold until you can no longer hear the background or ambient noise at your operating position. In most cases a DEXP threshold level of 60-70 should be sufficient.

24.4 MONITORING YOUR TRANSMITTED AUDIO

The Quick Record and Playback feature in SmartSDR can be used to monitor your transmitted audio. The audio recorded in this manner represents transmitted audio using all the enabled signal processing features so that adjustments can be made to optimize your transmitted audio.

- Connect your radio to a dummy load and switch the transmit antenna to the appropriate antenna connector or turn down the power output to 1W (a setting of 0W will not transmit any audio)
- Click MOX or press PTT to enable the transmitter
- Click the RECORD icon (red dot) on the slice that has the transmitter enabled. It will flash when recording.
• Talk normally into the microphone.
• When done, click the RECORD icon to stop recording. The PLAY icon (green triangle) will illuminate.
• Click the PLAY icon to play back the transmitted audio.

See section 12.8, Recording and Playback of Slice Receiver Audio for complete details on the usage of this feature. Also, see section 0,

How to Export Transmitted Audio for a description of the DAX MIC Stream.

24.5 RECOMMENDED AUDIO ADJUSTMENT STEPS FOR PHONE MODES

Use of a second receiver to monitor your transmitted audio in real time is the preferred method for making the adjustments listed below. Otherwise, use the Quick Record and Playback procedure described above for monitoring your transmitted audio and making the following adjustments.

- Select the desired microphone input from the drop-down menu in the P/CW panel.
- Select the desired transmit filter width on the Setup/Voice (PHNE) panel.
- Turn the speech processor off by pressing the PROC button in the P/CW panel so that it is not highlighted.
- Adjust the TX Equalizer to compensate for the microphone and operating conditions. The default setting is a good starting point for most microphones. The TX EQ is located after the processor in the signal chain, so it should typically be adjusted prior to engaging the processor. Minor adjustments can be done after engaging the processor, but care is needed to avoid excessive peaks.
- Speak into the microphone at the loudest voice level you would normally use.
- Adjust the microphone gain control so that the peak indicator hovers near 0 VU on the Level meter. Most microphones will require the +20 dB gain preamp to be enabled on the Radio Setup / Phone panel.
- Turn on the speech processor with the PROC button. The adjacent slider sets the Compression setting. In most cases use the NORM (normal) setting. Selecting DX and DX+ adds additional compression without distorting the audio.
- Readjust the transmit equalizer to optimize the audio for your voice characteristics, the desired operating style and microphone response once PROC is enabled.
- Enable the DEXP, setting it for your operating position’s ambient background noise. Ideally any device that generates background noise should be on so that the DEXP is optimally configured.
- If VOX operation is desired, enable the VOX button and adjust VOX gain/delay for proper operation.

The settings described above are included in MIC profiles. After the controls are adjusted, their settings can be saved for future use by storing a MIC profile. See section 18.4 Saving and Deleting Profiles.
To operate in Amplitude Modulation (AM) or Synchronous AM (SAM) mode, select AM or SAM on the Slice Receiver’s mode drop down menu. In selective fading conditions SAM mode may provide better detection of AM signals. The receiver’s preset AM filter is selected on the drop-down menu along with the mode selection. The carrier frequency indicator is shown at the center of the filter passband.

Note: The filter bandwidth may be adjusted on either side by dragging the side of the filter with the mouse. This allows asymmetrical filter settings to eliminate heterodyne carriers or other interference on one side of the desired signal.

The AM Carrier control allows the carrier level to be set while maintaining a constant overall PEP output of the transmitter. With the AM Carrier control set to maximum, standard 25% carrier operation is provided. When both the RF Power and AM Carrier controls are set to maximum, the carrier level will be approximately 25W and PEP output will be approximately 100W. Reducing the RF Power control will reduce the carrier level and PEP in proportion. By reducing the AM Carrier level, the percentage of carrier relative to total PEP can be reduced to increase talk power in the AM sidebands. This is called Reduced Carrier AM.
26 HOW TO OPERATE FM MODE

The FM (frequency modulation) feature provides three modes of FM operation: Narrow FM (NFM), Wide FM (FM) and Digital FM (DFM).

Wide FM is the standard FM mode used by commercial radio stations and provides 5kHz deviation FM modulation and demodulation with pre-emphasis and de-emphasis, CTCSS tone encoding and memories.

NFM is the same basic mode, but with a 2.5kHz deviation for narrower channel spacing.

DFM is a digital FM mode providing 5kHz of deviation, but no pre-emphasis and de-emphasis. This mode can be used for modulation of digital data that prefers a flat bandpass such as 9600 baud packet data.

When an FM mode is selected, the DSP button in the slice flag is replaced with an options button, OPT. Pressing the OPT button will reveal the FM specific settings, as shown below.

26.1 OPERATING FM REPEATERS

From upper right to lower left, the first drop-down menu in the FM options menu allows selection of CTCSS tone for transmit and the tone value. The Offset control selects the frequency offset or “split” in MHz for repeater operation. The repeater controls, “-“, “Simplex”, and “+” set the repeater offset direction or enables simplex mode (no offset). The REV button enables a quick frequency change to the repeater split or transmit frequency.
26.2 OPERATING FM REPEATERS (EU ONLY)

Repeaters in the UK and much of Europe may require an access tone to switch the transmitter from standby to ready for use. Commonly, this is a 1750 Hz tone of one half of a second or less.

For FLEX Signature Series SDRs that are configured to operate in Europe, a 1750 Hz manual tone burst option is provided to open repeaters. To use this option, key the radio, left click and hold the 1750 button for 0.5 seconds, then unkey the radio.

26.3 MEMORY CHANNELS

FM settings can be stored in the Memory form accessible from the Settings...Memory... menu in SmartSDR. The memory form, as shown below, stores the memory frequency along with other settings such as the mode, CTCSS tone, etc. Although this feature is optimized for use in FM mode, it can be used in any mode.

The memory form allows individuals to create lists that can be shared with others. For example, your local club may produce a list of frequencies all with a common "group" name. This group of channels can be independently exported and imported back into SmartSDR. Memory information is imported and exported to and from SmartSDR in Comma Separated Value format (CSV), which can be read and written by most database programs.

To create a memory entry, adjust the settings of the radio as you want them to be recorded, then click the Add button. The new entry will appear in the memory screen.

To invoke a stored setting, open the Memory screen, click on the desired entry, then click the Select button.

To delete a stored setting, open the Memory screen, click on the entry to be deleted, then click on the Remove button.
Clicking on the column headings will sort the table by that column. Shift + Click will add a secondary sort. For example, the table could be sorted by Mode and then by Frequency.

The order of the column display can be re-arranged by clicking and dragging the column headings.

The columns are defined as follows:

- **Owner**: This is important for importing files and is typically the callsign of the person creating the memory. This will be populated automatically when creating a new memory if a callsign has been entered in SmartSDR.
- **Group**: Also important for importing. The combination of Owner/Group identifies a set for import. When importing, the existing Owner/Group memories will be removed prior to importing the new fields. This makes it easy for a user to keep a master list of memories and distribute them and not have to worry about merging existing old data - initially blank
- **Freq**: The frequency to tune the slice when selecting the memory. This will initially be set to the Active Slice frequency when adding a memory.
- **Name**: A unique name for this memory - Initially blank.
- **Mode**: The Modulation/Demodulation mode for the slice (e.g. USB, CW, FM, etc.). Initially set to the Active Slice mode.
- **OffsetDirection**: If in FM mode, this sets the direction for the repeater transmitter offset. Options are Down, Simplex and Up. Initially this will be set to the matching setting in the Active Slice.
- **RepeatersOffset**: The offset in MHz. Initially this will be set to the matching setting in the Active Slice.
- **ToneMode**: In FM transmit, this can be set to Off or CTCSS TX for PL tones. Initially this will be set to the matching setting in the Active Slice.
- **ToneValue**: The tone value in Hz to use for CTCSS TX
- **Squelch**: Turns FM Squelch on or off.
- **Squelch Value**: The Squelch threshold value.
- **RF Power**: The power setting from 0-100 to use for this memory.
- **RXFilterLow**: The Receive Filter Low Cut in Hz
- **RXFilterHigh**: The Receive Filter High Cut in Hz
- **RTTY Mark**: The mark frequency when using RTTY mode
- **RTTY Shift**: The shift frequency when using RTTY mode
- **DIGL Offset**: The offset when using DIGL mode
- **DIGU Offset**: The offset when using DIGU mode

NOTE: Memories and Profiles are two separate features that may appear similar. However, memories record a relatively small number of radio configuration parameters, as listed above, while Profiles record many more parameters.
Diversity Reception is a powerful method for improving the reliability of a message signal by using two or more communication channels with different characteristics. Diversity is very useful to aid reception in weak and fading (QSB) signal conditions. With optimally configured antennas, weak signal QSB copy can be improved up to 75%.

Two common diversity methods are space and polarization. Both methods use separate antennas to receive different versions of the same signal. The FLEX-6600/M and FLEX-6700 incorporate two fully independent Spectral Capture Units (SCUs) that allow two separate antennas to be simultaneously digitized. The analog to digital converters (ADCs) on the respective SCUs are driven from a single clock source to provide stable synchronous reception.

Note: Since the FLEX-6500, FLEX-6400/M and FLEX-6300 use a single SCU, they are not capable of diversity reception.

For best results, antennas should be de-correlated in some way so that fading on one antenna is likely to be seen as increased signal strength on the other antenna. De-correlation can be accomplished by using different types of antennas (dipole and vertical), using the same type antenna at wide spacing (e.g. multiple wavelengths), or using the same antenna with different polarizations (horizontal and vertical or right and left). The more de-correlated the antennas the better but even small amounts can be beneficial. One interesting example of the application of circular polarization diversity on HF is discussed in the December 2010 *QST* article, “Gimme an X, Gimme an O, What’s that Spell? – Radio.”

The diversity implementation provided in SmartSDR is intended for use only with headphones. Two Slice Receivers attached to separate antennas are automatically routed to the left and right ears so that the brain can provide discrimination between the signals. The reason speakers are not used is that they allow the signals to combine in the space between the speakers to cause undesirable peaks and nulls in the sound. For example, slice A could be set to RXA and slice B to RXB.

To enable diversity, click the DIV button in the slice Audio drop down menu as shown below. This will create a diversity slave slice locked to the same frequency as the master slice of the diversity pair.

As seen in the screen shot below after diversity has been enabled, a weak SSB signal has been tuned on slice A attached to ANT1 and the slaved diversity slice B on ANT2 locked to the same frequency as slice A.

Note: The RXA, RXB, and XVTR ports are also available for receiver inputs.
SmartSDR automatically sets the slice audio faders to place the two antennas in the left and right ears respectively. Your brain does the rest. Remember that the sound will be very different from normal reception since you are literally listening in “stereo” to the same signal on two different antennas.
28 HOW TO OPERATE THE ATU

The antenna tuning unit (ATU) is a device in the RF signal path between the transmitter and its antenna to improve power transfer between them by transforming the impedance at the antenna feed output at the transmitter to a value compatible with the transceiver’s power amplifier. An ATU is useful when the antenna’s feedline impedance is unknown, complex, or otherwise different from the transceiver. It’s important to remember that the ATU has no effect on the actual SWR of the antenna and feedline. It does however change the impedance presented to the transmitter from the ATU.

Note that the radio software automatically folds back transmitter power so that the power reflected by the antenna and tuner system does not exceed 25 watts. This feature protects the Power Amplifier but should not be relied upon when operating with a mismatched antenna. Use of the ATU or an external tuner is recommended to match the transmitter to the antenna and minimized power reflected to the Power Amplifier.

The FLEX-6000 ATU is a standard feature of the FLEX-6500, FLEX-6600/M and FLEX-6700 and an option for the FLEX-6300 and FLEX-6400/M. The operation of the ATU is controlled by the SmartSDR software.

28.1 MODES OF OPERATION

There are two modes of ATU operation; manual and memory. In manual mode, the user initiates an ATU tune operation to attempt find a better match between the PA and the antenna system, but the inductance (L) and capacitance (C) values are not retained and the ATU will revert to bypass mode if the frequency or band is changed. Memory mode is an extension to Manual mode where the L/C values are retained and automatically used when the frequency of the transmit slice is within the ATU Match Frequency Range (with the same TX antenna selected).

What constitutes a successful ATU match? The ATU will try to impedance match the load to as close to a 1.1:1 SWR as possible. If the ATU measures an SWR of 1.1:1 or better at the beginning of the matching process, SmartSDR will leave the ATU in bypass and report Success.

A successful ATU match on 6m occurs when the SWR is improved from the initial SWR determined in the bypass state and is better than 2.32:1. For non-6m operation, a successful ATU match is one where the SWR is improved from bypass SWR reading and is better than 1.7:1.

The ATU will stay enabled but the ATU status indicator will not report Success if the SWR improved from bypass but does not meet the above SWR criteria. If the resulting SWR after an ATU tuning operation is not better than when in Bypass and the above SWR criteria is not met, the ATU goes into Bypass (ATU button is not illuminated) and ATU status indicator does not report Success.

ATU Match Frequency Range – After the ATU has found a successful match, the inductance (L) and capacitance (C) values are valid for a 200 kHz frequency span centered at the frequency the ATU tuning operation was initiated, or +/- 100 KHz. Once you tune the frequency of the transmit slice beyond that range, the ATU will be put into Bypass mode. The only exception is if there is another previously saved ATU memory frequency contained within that ATU Match Frequency Range and you have ATU memories enabled.
28.1.1 Manual Mode

To operate the ATU in manual mode without saving the ATU L/C values, make sure the MEM (ATU Memory) button is unlit by clicking on it (ATU memories are enabled by default).

Press the ATU button to initiate an ATU tuning operation. The ATU will set the power output to approximately 2W on 6m and 10W on all other bands during the tuning operation. The ATU will tune until it either achieves a successful impedance match as shown by the Success indicator, leaving the ATU button illuminated indicating that the ATU is engaged or the ATU cannot achieve a successful match, shown by the Success Byp indicator leaving the ATU button unlit indicating that the ATU is not engaged (in Bypass mode). Note that if the ATU determines that being in Bypass provides the best match, this is a successful ATU operation.

Pressing the ATU button while in Bypass mode, will initiate a new ATU tuning operation.

Tuning the transmit slice to a frequency outside of the ATU Match Frequency Range or to a different band will disable the ATU putting it into Bypass mode.

If the ATU is not able to provide a better impedance match and the SWR of the antenna system in Bypass is greater than maximum SWR threshold, neither the ATU and MEM buttons will be illuminated and the ATU status indicators will display Byp (Bypass) as shown here:

![ATU Memories Indicator](image)

28.1.2 Memory Mode

The Antenna Tuning Unit (ATU) has been enhanced to store and recall L/C values for frequency ranges per antenna port automatically. This feature is known as ATU Memories.

When the user initiates a manual mode ATU tune operation, a successful result can be either a better match was not found resulting in the ATU being in Bypass mode or that the ATU is inline, presenting a better impedance match to the transmitter. If the MEM (Memory) option was selected before the ATU tune operation, the result of the ATU tune operation will be stored in a persistence database otherwise known as a memory and recalled anytime the transmit slice is configured for that transmit antenna port (ANT-1 or ANT-2) and ATU match frequency range. The ATU Memory feature eliminates the need to manually retune the ATU to find a match when changing frequencies if the new frequency range in question already has an associated ATU memory.

The enable ATU Memory mode, click on the MEM button. It will be illuminated when ATU memory mode is active.
Once ATU Memories are active, perform an ATU tuning operation as described above. If the ATU could provide a better match than in bypass mode, both the ATU and MEM buttons will be illuminated and the ATU status indicators will display Success and Mem as shown here:

If the ATU cannot find a better match and the SWR when in bypass mode is below the maximum SWR threshold, only the MEM button will be illuminated and the ATU status indicators will display Success, Byp and Mem as shown here:

After a successful ATU tuning operation, either finding a match or being in bypass, if you tune the frequency of the transmit slice outside of the ATU Match Frequency Range, the ATU will either use an existing ATU memory for the new frequency range, or the ATU will go into Bypass mode with the MEM status indicator being unlit indicating there is no ATU memory for this frequency as shown below:

At this point, clicking the ATU button will initiate an ATU tune operation and the resulting ATU values will be stored in an ATU memory.

At any time, you can initiate an ATU tuning operation by simply clicking on the ATU button and the resulting ATU values will be stored in an ATU memory regardless if an existing ATU memory exists or not.

Also, for high Q antennas that have a very narrow low SWR range, ATU memories can be saved every 10 kHz for a very granular ATU memory profile for that antenna.

Clearing ATU Memories – ATU memories can be easily cleared by placing your mouse cursor over the ATU button and clicking the right mouse button to display the ATU context menu. Select the option Clear ATU Memories and all previously stored ATU memories will be cleared.

Performing a Reset to Factory Defaults on the FLEX-6000 will also clear all ATU memories.
29 HOW TO CONFIGURE ANTENNAS

29.1 GETTING STARTED

When SmartSDR starts for the first time, it loads a single Panadapter and Slice Receiver with Antenna 1 (ANT1) selected by default. Transceiver operation is then functional on ANT1 with no further setup or adjustment required.

29.2 SELECTING THE RECEIVE ANTENNA FOR A PANADAPTER WITHOUT SLICE RECEIVERS

The image above shows a single Panadapter with no active Slice Receivers. The Panadapter receive antenna is selected on the ANT pop out menu on the left side of each Panadapter. LoopA or LoopB (FLEX-6500 and FLEX-6700 only) may be selected along with the RF Gain for the associated Panadapter.

29.3 USING THE PANADAPTER ANT POP-OUT MENU

FLEX-6700
FLEX-6500
FLEX-6300
The ANT pop-out menu provides receive antenna selection, RF Gain control as shown in the images above, and Wideband Noise Blanker control. Changing the configuration in this menu affects the receiving setup for all Slices located on its Panadapter. Changing the receiving antenna on any slice within the Panadapter changes the configuration for its Panadapter and all Slices located within.

The Slice Receiver flags allow drop down selection and annunciation of the receive antenna selected for its Panadapter and all the Slice Receivers in it. The flag shown above is similar to the flag shown for each of the radio models. The number and names of the antenna inputs and outputs vary by radio model.

Loop selection is controlled only from the Panadapter ANT menu but is indicated under the receive antenna selector on each slice flag. The LoopA annunciator can be seen under ANT1 in the slice A flag shown above. When shown, the RX A loop is active and connected to ANT1. The Loop feature is not available on all radio models.

The Wideband Noise Blanker (WNB) can be controlled from the ANT pop-out menu. Given the wideband nature of this feature, the threshold slider in the GUI controls an entire SCU, which may have several Panadapters and/or Slice Receivers attached to it. For convenience, the slider control is available in each slice and each Panadapter. Adjusting any one of them adjusts for an entire SCU, and all related slider controls are updated. Enabling and disabling the WNB function is available separately for each Panadapter. All Slices present on a Panadapter inherit the same value for the WNB enable and level. See section 15.3, Wideband Noise Blanker (WNB) for details on the use of the Wideband Noise Blanker.
29.4 SELECTING THE TRANSMIT ANTENNA FOR A SLICE RECEIVER

The transmit antenna for each slice is selected from the red drop-down menu as shown above. The selection of transmit antennas varies by radio model. Each Slice may have its own designated transmit antenna. The large red TX button indicates the Slice Receiver that controls the transmitter.

29.5 ANTENNA OPTIONS FOR PIN DIODE QSK OPERATION

Full QSK operation with reception between individual CW elements is supported on a single transceiver antenna at speeds up to 30 WPM. QRQ QSK is supported at 100+ WPM when a separate receive antenna is used on RX A, RX B or XVTR. The QSK annunciator located to the left of the TX selector button on each flag indicates that QSK is possible in the selected mode. QSK is not supported with a separate receive antenna if that antenna is connected to ANT1 or ANT2.

29.6 USING A COMMON RECEIVE ANTENNA WITH SEPARATE TRANSMIT ANTENNAS

The image above illustrates two Panadapters on a single receive antenna (ANT1) but using separate transmit antennas on ANT1 and ANT2 respectively. Slice A and B both have ANT1 selected for
reception. Slice A has ANT1 selected as the TX antenna and slice B has ANT2 selected as the TX antenna. Clicking on the TX indicator for the slice changes the TX indicator to red and activates the respective slice as the transmitter with its TX antenna.

29.7 USING TWO TRANSCEIVE ANTENNAS ON THE FLEX-6600/M AND FLEX-6700

In the image above, slice A is set to receive and transmit on ANT1. Slice B is set to receive and transmit on ANT2. The slice B is selected as the active transmit frequency of 7.033 MHz on ANT2 as indicated by the red TX button. To move the transmit frequency to 14.225 MHz on ANT1, simply click the TX button on slice A.

29.8 USING A DEDICATED RECEIVE ANTENNA

The image above shows slice A using a dedicated receive antenna on RX A while transmitting on ANT1. The FLEX-6600/M and FLEX-6700/6700R models can use separate receive antennas on RX A and RX B. The FLEX-6400/M and FLEX-6500 have only the RX A option. All radio models can receive on the XVTR port. The XVTR port is not recommended as a receive antenna port if an external preamp
is used on its antenna. Accidental transmission on the XVTR port could put up to +10 dBm of reverse power into the connected preamp.

29.9 RECEIVE-ONLY ANTENNA OPERATION

In the image above a FLEX-6700 is configured so that slice A receive antenna is set to RX A and slice B to RX B. ANT1 is selected as the transmit antenna for slice A and ANT2 for slice B. This configuration allows separate receive antennas on the two independent SCUs. This configuration is not available on the single SCU FLEX-6500, FLEX-6400/M or FLEX-6300. Slice A is selected as the transmit frequency. To change the transmitter to slice B, simply click its TX button.

29.10 ANTENNA SELECTION FOR TRANSVERTER OPERATION

The left slice flag above shows XVTR selected for both receive and transmit antennas. This provides conventional transverter port transceiver operation. In the slice flag on the right, split transmit/receive transverter operation is configured in which RX A is set as the receive antenna and XVTR as the transmit antenna.

29.11 USING THE RECEIVE RF GAIN/PREAMPLIFIERS

Each Signal Capture Unit (SCU) in the FLEX-6000 includes an RF preamplifier with adjustable gain. The RF gain selector is in the ANT menu on the left side of the screen.
The FLEX-6300 can be set to 0dB (default) and +20dB

Note: Since the FLEX-6300 always operates in wide band mode, the preamplifier incorporates a tapered gain with -3db cutoff located at ~14 MHz. This technique is optimized so that preamp gain, and an improved noise figure is provided above 14 MHz, and the gain is tapered below 14 MHz to offset the rising noise levels below 14 MHz. At very low frequencies the preamp will function as an attenuator when enabled.

The FLEX-6500 can be set to -10dB, 0dB (default), +10dB and +20dB.

The FLEX-6400M and FLEX-6600M can be set to -8dB, 0dB (default), +8dB, +16dB, +24dB and +32dB.

The FLEX-6700 can be set to -10dB, 0dB (default), +10dB, +20dB, +30dB and +40dB.

Note: In some cases, the preamp of the FLEX-6700 may overload at the 20dB setting but not at the 30dB setting with the same input signal. This is caused by differences in the hardware implementation of the two preamp settings. If the 20dB setting is overloading, the 30dB setting should be tried before changing to the 10dB setting.

29.12 SETTING THE RF GAIN/PREAMPLIFIERS

The RF gain selector is in the ANT menu on the left side of the screen. The gain range is selectable in 10 dB steps from -10 dB to +40 dB on the FLEX-6700, 8 dB steps from -8 dB to +32 dB on the FLEX 6400 and FLEX-6600, -10 dB to +20 dB on the FLEX-6500 and 0dB to +20dB on the FLEX-6300. The default setting is 0 dB. For typical HF operation below 12M, the 0 dB setting provides the highest dynamic range and is recommended for most locations. Even in quiet rural locations, gain is not needed or desired unless a low gain/low noise antenna is utilized.

The best way to determine the amount of gain needed for a given antenna and band condition is to disconnect the antenna and measure the receiver noise floor with the Slice’s dBm meter. Hover the mouse pointer over the S meter to enable the pop up dBm meter indicator. Next, connect the antenna. If the band noise measurement without a signal present in the passband is 8 dB or more than that with no antenna, additional gain is not needed. If a directional antenna is used, it should
be pointed toward the band opening for this measurement because noise propagates with the opening.

Note: Although the RF gain slider is present in every Panadapter, the setting controls the RF preamplifier of the associated SCU. If you adjust the preamp settings for one Panadapter, all other Panadapters associated with that SCU will also be changed since the change is made to the SCU. On a FLEX-6600/M and FLEX-6700, this is equivalent to making the change on a “per antenna” basis. In the case of the FLEX-6500, FLEX-6400/M and FLEX-6300 with a single SCU, the preamplifier settings affect all Panadapters and receivers.

The preamp indicator in the upper right corner of the Panadapter will be lit whenever the preamp/attenuator is turned on for the band. It will show the requested gain on all radio models other than the FLEX-6300. On the 6300, the preamp provides different levels of gain by frequency. If there is a net +5dB or better gain, the indicator will show PRE. If there is a net -5dB or less gain (attenuation) then the indicator will read ATTN. If it is in-between these two values, it will read ---- to indicate that the preamp is on, but not providing much change in the band of interest. This means that on a 6300 one Panadapter could indicate PRE and the other ATTN.

![Preamplifier Indicator](image)

29.13 ANTENNA CONFIGURATION BASIC TERMS AND RULES

For more advanced antenna configurations, it is helpful to define terms used to describe the FLEX-6000 Signature Series architecture and the rules associated with its configuration.

- A Spectral Capture Unit (SCU) is a direct sampling, wideband digitizer that captures the entire RF spectrum within its input filter limits.
- The FLEX-6700/6700R and FLEX-6600/M models contain two fully equivalent but independent SCUs. The FLEX-6500, FLEX-6400/M and FLEX-6300 contain a single SCU.
- The FLEX-6700/6700R and FLEX-6600/M models can simultaneously digitize two antennas, one for each SCU, while the FLEX-6500, FLEX-6400/M and FLEX-6300 digitize a single antenna.
- Each Panadapter spectral display requires selection of an associated receive antenna. The default association for the first Panadapter is ANT1.
- One or more Slice Receivers may be placed on one or more Panadapters.
- Multiple Slices and Panadapters can share a single receive antenna.
- SmartSDR allows up to eight Panadapters and eight Slice Receivers on the FLEX-6700/6700R models and up to four Panadapters and four Slice Receivers on the FLEX-6600/M and FLEX-6500. The FLEX-6400/M and FLEX-6300 allow up to two Panadapters and two Slice Receivers.
• All Slices placed on a Panadapter must use the same receive antenna as the Panadapter. Changing the receive antenna for a single slice will change the receive antenna for its host Panadapter and all Slices within.
• The FLEX-6700/6700R and FLEX-6600/M models allow simultaneous reception from two receive antennas. The FLEX-6500, FLEX-6400/M and FLEX-6300 operate from a single receive antenna.
• The receive RF Gain control located on the Panadapter ANT pop out menu is tied to its respective SCU/receive antenna combination.
• Transmit antenna selection is completely independent of the receive antenna. Only one transmit slice can be active at one time.
• The transmit slice is selected by clicking on the large “TX” button on the slice flag, which will illuminate the button in red.
• ANT1 and ANT2 ports allow transmission at 100W on 160m through 6m amateur bands. The XVTR port allows continuous coverage low power (+10 dBm max) transverter IF from 100 KHz to 165 MHz.
• Each slice can have its own transmit antenna selection, which may be the same as or different from the assigned receive antenna.
• Each SCU on the FLEX-6700 has the option of a dedicated receive-only antenna designated RX A and RX B respectively. These inputs are hard wired to their respective SCU and may not be switched between SCUs.

NOTE: This does not preclude using RX A with ANT2 or RX B with ANT1.

• The single SCU on the FLEX-6500 has the option of the dedicated receive-only antenna input RX A.
• LoopA and LoopB on the FLEX-6500 and FLEX-6700 are provided to allow connection of external preamplifiers or pre-selectors. The internal relay switching is identical to RX A and RX B respectively. However, LoopA and LoopB is a logical designation that assumes that their input is from ANT1 or ANT2. This means that a preamplifier installed in LoopA will be functional if either LoopA or RX A are selected. Logically RX A will assume a receive-only antenna connected to RX A and LoopA will assume that a device is connected between RX A IN and RX A OUT.
• The XVTR input/output port may be used on the FLEX-6300, FLEX-6400/M, FLEX-6500, FLEX-6600/M and FLEX-6700 as another receive-only input or may be used as a transverter transmit or common receive port. RX A and/or RX B on may be used for split transmit receive operation when selected as the receive antenna and XVTR as the transmit antenna.
• PIN diode silent CW QSK operation on ANT1 and ANT2 require that both receive and transmit be on the same antenna or that a dedicated receive-only antenna be used (ideal for QSK) on RX A, RX B, or XVTR. If ANT1 and ANT2 are used separately as receive and transmit antennas, the transmitter reverts to mechanical relay TR switching. Each slice has a QSK annunciator that indicates when PIN diode TR switching is engaged.
DISPLAYING SPOTS IN SMARTSDR FOR WINDOWS

SmartSDR v2.3 for Windows introduced a feature that allows Spots, supplied by third party programs, to be displayed directly in the Panadapter window. Some of these programs include N1MM, FRStack, Slicemaster, DXLabs, and Logger32. While there is no capability in SmartSDR to directly connect to a cluster server via telnet, spots can be provided using these programs as well as any other third-party program that uses the Spot API commands in the radio. This section explains the various Spot controls that are available in SmartSDR.

When enabled, spots will appear in SmartSDR as shown below:
When a spot is clicked, the Active Slice will automatically tune to the spot frequency. When there are many spots in a single area, they collapse into a number value. In the image above, the “+3” is such a collection of spots. When this collection is clicked, the list of the spots expands, showing the spots in this area, as shown below:

Clicking any of these spots will tune the Active Slice to the spot frequency. Hovering the mouse cursor over a spot will show the spot timestamp as well as any comments associated with the spot, if available. This is shown below:
A specific spot can be deleted by right-clicking on a spot, as shown below:

The spot settings menu can be found by going to Settings → Spots... in SmartSDR. This window is shown below:

- The **Spots** button enables or disables the Spots feature.
- The **Levels** slider changes the depth of the displayed spots before collapsing them into a list of spots.
- The **Position** slider determines the location in the Panadapter where spots will be rendered. The lowest setting places spots at the bottom of the Panadapter. Increasing this value will raise the
starting position closer to the top of the Panadapter. This setting can be useful for users that prefer that spots appear above signals that appear in the Panadapter.

The **Font Size** slider changes the font size of the spots.

Enabling **Override Colors** will provide an option to set the colors of all spots to the color of the user’s choice, as opposed to colors specified by the application providing the spots.

Enabling **Override Background** provides an option to change the color of the spot backgrounds. The **Auto** option picks a color that contrasts well with the spot color.

Pressing the **Clear All Spots** button clears all currently collected spots in the radio.
31 HOW TO CONFIGURE TRANSVERTERS

To configure transverters, first bring up the transverter configuration panel in SmartSDR by clicking Settings... Radio Setup... and selecting the XVTR tab. The radio setup panel should look like this:

![Transverter Configuration Panel](image)

To add a transverter band, click the plus (+) tab. A new transverter band tab will show up which has blanks that need to be filled in with information about your transverter. The first blank holds the name of the transverter or transverter band. Generally, you would enter something like "1296" for 1296MHz or "10G" for 10.368GHz, but you may enter any 4-character descriptor for the band that suits you. Next, the RF frequency in MHz is entered followed by the IF frequency in MHz. This is followed by any error in your local oscillator, a maximum output power from the radio and then any IF gain in your transverter. Here's a detailed description of each field and what you would input or see in the field:

Name: holds the name of the transverter, generally a reference to the RF frequency of the transverter. This name must be 4-characters or less. The name will be displayed in the Panadapter during transverter use as a reminder that RF will be passing through the transverter. The name is also used on the transverter band selection panel discussed later.

RF Freq (MHz): the output RF frequency of your transverter. This is the frequency that the final antenna will work on. Note that the RF frequency and the IF frequency are directly related by the LO frequency. You must enter an RF frequency that will be directly translated to the IF frequency. For example, if you enter “1296” for a 1296 to 28MHz transverter, you must enter “28” in the IF frequency. Do not use “1296.1” for one and “28.0” for the other unless this is the way your transverter is configured. If you have any doubts, be sure that the LO frequency calculated by SmartSDR matches the LO frequency of your transverter.

IF Freq (MHz): the IF frequency that corresponds to the RF frequency previously entered. Currently SmartSDR only understands high-side injection so the IF frequency must be below the LO frequency of your transverter.
LO freq (MHz): the calculated value of the local oscillator in your transverter. This number should match the transverter manufacturer’s specifications. If it does not, check the RF and IF entries again and make corrections.

LO error (Hz): If your radio’s local oscillator is off-frequency by a known amount, enter that amount here and SmartSDR will make the proper adjustments to properly read transmit and receive frequencies in SmartSDR. If you are using a GPS or 10MHz locked transverter, this number should be set to zero.

RX Only: Enable this if you do not want to transmit through your transverter. It will lock-out the transmit capabilities in SmartSDR.

Max Power (dBm): Enter the IF input power level to the transverter to achieve maximum output power of the transverter. This will limit the output power that SmartSDR allows to be provided to the transverter. This value may be up to +15dBm for IF frequencies below 80MHz and up to +8dBm for IF frequencies above 135MHz (default: 0dBm). The value set in this field, should match the power output when the RF Power slider is set to 100. The lower end (values near 1 on the RF Power slider) will be approximately 20dB lower than the Max Power setting.

Note: This power range may be different than using the IF frequency directly (i.e. not using the XVTR RF frequency).

RX Gain (dB): this field is optional but will correct the receive signal level reading in the Panadapter and Slice Receivers. To properly set this, you should enter the IF gain for the transverter. If you do not know this value, ask your transverter manufacturer. If you do not have this number available, it may still be calculated by inputting a known value signal into the transverter, reading the receive level in SmartSDR and then adjusting the RX Gain until the values are equal.

Below you can see a completed transverter setup form with a single band entered:

![Transverter Setup Form]

The green “Valid” indicates that SmartSDR has enough information to use the transverter.
When operating in a Transverter band the Transverter name will appear in the top right corner of the Panadapter as shown below:

31.1 USING A TRANSVERTER

There are two ways to tune to a transverter. The first way is to use the band select panel in the Panadapter (shown below). To get to the transverter band panel, first select Band in the Panadapter and then click the XVTR button at the lower right of the panel of buttons that appears. Next select the transverter band you wish to use. The buttons in the panel use the name of each transverter specified in the transverter setup form.

When the band button for a transverter is clicked, the radio will change the frequency of the Panadapter to the transverter frequency. Below you can see that we are now on 1296.0MHz and there is now a band indicator in the upper left of the Panadapter that indicates that we are on the 1296 transverter.
The FLEX-6000 is receiving on the IF frequency and performing a frequency translation in the slice and the Panadapter to indicate the frequency being listened to.

If you have more than one transverter on the same band, you can name them differently and then access them with different transverter buttons. Each transverter band behaves just like an HF band in that it remembers settings used for that band. If you were to QSY (change frequency) to 1296.1, SmartSDR will remember that this is the last frequency used on the 1296 transverter band. All other features of SmartSDR including multiple Slices, wide bandwidth views of the spectrum, etc. are all available on the transverter band.

To return to an HF band, simply enter the HF frequency that you wish to QSY to or select the band with an HF band button.

The second way to select a transverter band is to directly enter the frequency of the desired operation into the Slice Receiver. For example, entering “1296.” (don’t forget the decimal point to tell SmartSDR that we want to go to 1296MHz) will move the Panadapter and slice to 1296MHz.

31.2 MULTIPLE COPIES OF A BAND

In some situations, it may be desirable to have multiple copies of a single frequency in the radio. For example, if you have a high power 144 to 28MHz transverter in use on a FLEX-6700, the radio will not definitively know whether to tune to the internal 144MHz band or to the external transverter. This ambiguity is resolved in two ways: First, if the band is selected using the band buttons, the radio will always know which band to switch to. If direct frequency entry is used, the following rules are used to select the band of operation:

- If the Panadapter is currently in a band that would match the entered frequency, SmartSDR remains on the current band.
- The most recently used band that matches the frequency entered will be selected.
Example:

- The current Panadapter is tuned to 50.125MHz
- There is an external 144 to 28MHz transverter on a FLEX-6700 with an internal 2m band
- The most recently used 144MHz band is the external 144-28MHz transverter
- A direct frequency entry of “144.2” is typed
- The radio will select the external 144-28MHz transverter and tune to 144.200MHz
- The Panadapter will clearly indicate the selected band by placing a “144” (or whatever name was given to the transverter band) in the upper right of the Panadapter If this is not the desired result -- if you intended to switch to the internal 2m band, just use the Band selection to switch to this band in the Panadapter. At this point, the radio will switch to the correct band and it will become the “favorite” band next time a direct frequency is entered.

31.3 TRANSVERTER POWER SETTINGS

The operation of the RF power slider in SmartSDR is set by the Max Power setting in the transverter setup. Setting the RF power slider to 100 will set the power to the Max Power setting. The zero setting will shut off all RF power from the transverter port. A setting of 1 would be 20dB below the max power. For example, if a Max Power setting of +5dBm was set in the settings, the slider “0” position will be no power, “1” will be +5dBm - 20dB = -15dBm. The 50% setting on the slider will be +5dBm - 10dB = -5dBm.

31.4 TRANSMITTING ON A TRANSVERTER

When transmissions occur on the transverter, the radio will reconfigure internal relays to connect the exciter in the FLEX-6000 to the XVTR port on the radio. If a split IF is in use, the RXA or RXB port may continue to be used for receiving if your transverter continues to provide receive RF (check with transverter manufacturer).

When a common IF transverter is used, the XVTR port normally being used for transmitting will be switched away from the FLEX-6000 SCU and connected to the exciter. As a side-effect, the relay may connect the SCU to one of the HF antenna ports which causes the Panadapter to show HF signals in the HF IF band in addition to the transverter band when transmitting.

In addition, when transmitting on a split IF transverter configuration, because the transverter RF output is low power it will not be dramatically visible on the transverter Panadapter like it is shown when transmitting on HF at high power.

Both conditions during transmit can be quite confusing as they do not accurately represent the transmitting state of the radio properly. For this reason, the Panadapter will pause when using IF transverters while transmitting.
31.5 WEAK SIGNAL CONSIDERATIONS

When using SmartSDR for weak signal operations, three kinds of receivers will be in use: Panadapters, Waterfalls and Slice Receivers. The noise floor of the Panadapter may be changed to facilitate seeing signals that are weaker than the “noise floor.” Amateurs generally refer to the noise floor as the noise floor in a 500Hz bandwidth receiver. For a SmartSDR Panadapter, the receiver is variable width for a single “bin” or pixel in your display. The further you zoom in the Panadapter, the lower the bin size in use and the lower the noise floor. The processing gain achieved in this way is 3dB for each reduction in the bandwidth of a bin by two --- or each time the magnifying glass ‘+’ is depressed.

On a FLEX-6600/M or FLEX-6700, fully zoomed in, the bin size will be 1.5Hz. This represents a 25dB gain over the 500Hz noise floor. The Waterfall and Panadapter both derive data from the same receiver so for best weak signal viewing, zoom the Panadapter to one of the last few zoom levels. On a FLEX-6500 or FLEX-6300, the minimum bin size is 5.9Hz.

The noise floor of the Slice Receiver is independent of the Panadapter and is adjustable by adjusting the filter width of the Slice Receiver. Your ears and brain provide their own type of processing gain and so the Slice Receiver should be adjusted for best listening experience. In general, the AGC-T should be set to a low value for best listening on transverted bands. In other words, it should be adjusted for a relatively quiet receiver.
32 USING THE FLEXRADIO POWER GENIUS XL AMPLIFIER

The FlexRadio Systems **Power Genius XL™** linear amplifier is fully integrated with *SmartSDR for Windows*. When the amplifier is installed in the same Local Area Network (LAN) as the FLEX-6000 transceiver, all the amplifier’s operational controls can be manipulated using SmartSDR. This allows the amplifier to be located somewhere other than at the operating position, if desired.

Using the LAN connection to the amplifier, *SmartSDR for Windows* sends information about the band and mode of the Slice Receiver that controls the transmitter. The Power Genius XL uses this information to configure the low pass filters and operational modes of the amplifier. Full details can be found in the *Power Genius XL User Guide*, available from the FlexRadio Systems website.

The only configuration change needed to operate the Power Genius XL amplifier from *SmartSDR for Windows* is to configure the correct transmit time delay. The amplifier needs at least 20 milliseconds of settling time between receiving the keying signal and arrival of the RF signal to be amplified. This can be achieved by setting the TX Delay value to 20 or more. See sections 39.6, **TX Tab** and 61, **Transmit Profiles** for more details. The TX Delay setting applies to both LAN and direct PTT signaling.

The Power Genius XL sub-panel appears in the SmartSDR radio control panel area when a connection has been made between the amplifier and the transceiver. When no connection is present, the AMP subpanel does not appear. The subpanel displays output power, SWR and amplifier temperature. See section 41.7.7, **Power Genius XL Panel** for details about the subpanel.

The last component of the Power Genius XL integration with the SmartSDR controls is the amplifier state control button. This button is found in the bottom right corner of the SmartSDR display and has four values:

- When the button is missing, the amplifier is not connected to SmartSDR. The AMP subpanel does not appear in the control panel area.
- When the button is dimmed and reads “AMP Standby”, the amplifier is connected to SmartSDR but is in standby mode. If a signal is transmitted, the amplifier will not amplify it. Click on the button to change the amplifier state to “Operate”.
- When the button reads “AMP Operate”, the amplifier is connected to SmartSDR and ready to accept and amplify an RF signal. Click on the button to change the amplifier state to “Standby”.
- When the button is red, the amplifier is engaged and amplifying the RF signal sent by the transceiver.

Adjust the output power of the amplifier by adjusting the FLEX-6000’s output power. Use the **RF Power** control described in section 41.7.1, **RF Power / ATU Control Panel**. The transmitter’s output power needs to be about 30 to 40 watts to drive the Power Genius XL. The amplifier presents a very low SWR to the transceiver, so in general, use of the FLEX-6000 ATU is not recommended.
33 HOW TO CONNECT AN EXTERNAL AMPLIFIER

The FLEX-6000 has hardware interfaces for connecting an external power amplifier. There are four PTT outputs on the FLEX-6700, FLEX-6600/M, FLEX-6500 and FLEX-6400/M and two outputs on the FLEX-6300, each with independently configurable time delays, a transmit hold-off input for amplifiers that have QSK hold-off outputs, and a standard zero to negative four Volt hardware ALC input. SmartSDR controls the configuration for these interfaces using the TRANSMIT tab in the Radio Setup menu. (Left: FLEX-6700/6500, Right: FLEX-6300, other models are similar)

On the FLEX-6700, FLEX-6600/M, FLEX-6500 and FLEX-6400/M there are four PTT outputs. Three are RCA jacks on the rear panel, labeled TX1, TX2, and TX3. The FLEX-6300 has one RCA jack labeled TX. On each of the radios there is an output on Pin 11 of the Accessory connector on the rear panel as well. These outputs are isolated, and each one can have a specific delay. Some users will want to utilize the delay settings to sequence switch external equipment.

For external amplifier use, the delay should be set to zero for any output that keys the external amplifier. This will ensure the relay will follow the PTT signal exactly.

The TX Delay setting can be used if the external amplifier has slow T/R relays and requires a longer time between PTT and RF Emission. Unless you are noticing problems with the radio emitting RF before the amplifier has switched to transmit position, you should leave the TX Delay set to zero.

The TX Delay will have a negative impact on QSK operation and other timing specific digital modes. If the intent is to operate QSK then Delay should be set to zero.

The Interlocks settings are used for amplifiers that have a hold-off output for QSK CW. There are two interlock inputs. One is an RCA jack on the rear panel, and the other is Pin 13 of the Accessory connector on the rear panel. On the FLEX-6300 this is only available on the Accessory connector

If your amplifier does not have one of these outputs, or you do not use it in your station, leave these settings disabled. If you need to use the hold-off, select Active High or Active Low to enable the interlock and set the proper polarity of the signal provided by the amplifier.
34 USB CABLES

34.1 USB CABLES OVERVIEW

The USB Cables feature provides a means to control external devices such as amplifiers, antenna controllers, and tuners via USB to Serial data cables connected to the USB ports on the back panel of the radio. Band data generated by SmartSDR appear on the cable in a form acceptable to the external device.

This feature is limited to FTDI USB cables which contain embedded circuitry that translates the USB signals and protocol to one of several serial or parallel data protocols. In some cases, data flow is bidirectional with a wide selection of speeds and signaling levels.

FlexRadio carries two FTDI cables that can be used to interface with many devices:

- FTDI USB to Serial Port Cable DB9M (UT232R-200). For most configurations, only Pins 2, 3, and 5 will be used.
- FTDI C232HM (C232HM-EDHSL-0). This parallel data cable has an output of 10 pins that can be used for interfacing to other devices in BIT and BCD modes (described below).

The cable that is used to interface with an external device will vary for each device. One of the above cables may be sufficient for operation in many cases, while for other devices a proprietary cable or custom-made cable may also be needed. Detailed information for many commonly used devices is provided in the USB Cables Interface Guide available in the Downloads section of the FlexRadio Systems website.

Three main types of cables are supported, CAT, BIT and BCD, described below. In addition, a preconfigured cable type is provided for Down East Microwave 2 and 4-meter Low Drive Power Amplifiers: See http://www.downeastmicrowave.com/product-p/2mldpa.htm for more information.
34.2 CABLE MANAGEMENT

USB Cables are managed through the USB Cables window found in the Settings -> USB Cables menu:

Using the USB Cables window, cables can be selected, activated and deactivated, modified, logged and removed. The fields in the window are:

- **Name** – The name given to the USB Cable. Newly installed cables get a default name. The name can be changed with the Edit command.
- **Serial Number** – The serial number of the USB Cable, read from the FTDI chip embedded in the cable.
- **Type** – The type of the USB Cable. This field is limited to one of the following:
 - CAT
 - BIT
 - BCD
 - LDPA
- **Enabled** – Enables or disables the USB Cable.

The Edit, Log and Remove buttons perform a function on a selected cable. Clicking Edit opens a window that allows the user to edit the settings of the selected cable. Clicking Log opens a window that enables logging for a cable. Logging allows the user to see and monitor all traffic going across the cable. For BIT and BCD cables the log indicates the bits written to a cable as a hexadecimal number. Clicking Remove removes the cable from SmartSDR management. Note that cables can be removed only when they are unplugged.
34.2.1 CAT Cables

CAT cables are serial data communication cables on which a small subset of the CAT command set is implemented. Most of the functions implemented on these cables are frequency reporting functions. Each cable has an associated source device in the radio which supplies the frequency information communicated across the cable.

The sources are:

- **TX Slice** - The cable will report the frequency of the slice receiver that holds the Transmit Indicator.
- **Active Slice** - The cable will report the frequency of the active slice receiver (the slice that has the yellow cursor).
- **TX Panadapter** - The cable will report the center frequency of the panadapter that contains the transmit slice
- **Specific Slice** - The cable will report the frequency of the specified slice (A, B, C, D, E, F, G, H)
- **RX Antenna** - The cable will report the frequency of the specified receive antenna (ANT1, ANT2, XVTR, RXA, RXB). Note: If multiple slices are on the same RX Antenna then the frequency of the last tuned slice will be reported.
- **TX Antenna** - The cable will report the frequency of the specified transmit antenna (ANT1, ANT2, XVTR). Note: This frequency is only changed/reported when the TX Slice is connected to the specified antenna.

The **Advanced** menu provides configuration for link speed, number of data bits, parity, stop bits and flow control.
The CAT commands supported on CAT cables are:

- **FA and ZZFA**: Report the source frequency, **Get/Read Only**
- **FB and ZZFB**: Report the source frequency, **Get/Read Only**. FA and FB report the same information.
- **FR**: Reports which slice is the receiver (0 or 1) which corresponds to the slice that does NOT control the transmitter.
- **FT**: Report or set the transmit slice.
- **SP**: Report the split mode status or enter split mode.
- **SB**: Report the status of a “sub-band receiver”. This command will report “SB0” when a single SCU is in use, or “SB1” when more than one SCU is in use.
- **IF and ZZIF**: Report the source frequency as well as mode and other parameters, **Get/Read Only**
- **AI and ZZAI**: Set 'auto-report' enabled/disabled
 - If **Auto-report** is FALSE, then the external device must poll by sending a command through the USB Cable. If **Auto-report** is TRUE, then anytime the source frequency changes it is automatically sent on the CAT cable.
- **PC**: Set and get the current power level
34.2.2 BIT Cables

BIT cables provide a means to map the tuned frequency of the radio to a set of individual signals/wires at the end of the cable. These cables are designed to control external devices when the radio is tuned to specific bands or frequency ranges, and for external keying or sequencing that is triggered when the transmitter becomes active.

The signal that appears on each bit/pin of a BIT cable is configured by use of the controls in the **USB Cables** menu:

- **Pin** – Enables/disables each pin/bit individually
- **Polarity** - Controls whether the pin/bit is high or low when triggered
- **Source** - Determines which source is used as the frequency check for this bit/pin. The sources are the same as for the **CAT** cables, listed above.
- **Trigger** - Determines the band/frequency range that the source must be within for this bit/pin to be active.
- **PTT** - When set, the pin/bit will become active only when the radio is in transmit and the source frequency is within the output band/frequency range. Individual pin/bit PTT and TX Delays can be set and will be used by the radio when keyed.
34.2.3 BCD Cables

BCD cables provide a means to map the tuned frequency of the radio to a 4 or 5-bit Binary Coded Decimal output representing specific bands.

The BCD signal that appears on the cable is configured by use of the controls in the USB Cables menu:

- **Source** - Determines which source is used as the frequency check. The sources are the same as for the CAT cables, listed above.
- **Type** – Specifies which of several available BCD mappings are generated by the cable:
 - **HF_BCD** - Yaesu/Elecraft BCD band output
 - **VHF_BCD** - Like HF_BCD but for VHF and higher bands
 - **HF_VHF_BCD** - Combined HF and VHF output

<table>
<thead>
<tr>
<th>BCD Output</th>
<th>Band</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>160</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>432</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Band</td>
<td>Bit 4</td>
<td>Bit 3</td>
<td>Bit 2</td>
<td>Bit 1</td>
<td>Bit 0</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>432</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>902</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1296</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2304</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3456</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5760</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10368</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24048</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>47088</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
34.2.4 LDPA Cables

Control cables for Low Drive Power Amplifiers for the 2 and 4 meter bands produced by Down East Microwave Inc. are supported by the LDPA option in the **USB Cables** menu. The functions supported by the amplifiers are determined by the manufacturer, so the options for this type of cable are limited to selecting the model of the amplifier and turning the pre-amplifier on and off. As with all USB cables, the entire cable can be enabled or disabled.
35 HOW TO OPERATE IN DIGITAL MODES

With the introduction of DAX (Digital Audio eXchange), digital audio signals can be transferred from the radio to third-party sound card applications without the need for a radio-to-PC audio interface or a physical sound card in the PC. This method provides a signal path without multiple digital to analog and analog to digital conversions, without injected noise and with higher dynamic range over multiple channels. Using DAX is the preferred method for operating digital modes with the FLEX-6000.

This procedure described here assumes that you have a working knowledge of operating digital modes with your favorite sound card based digital mode program and will not delve into the details of configuring specific third-party digital mode programs. For the examples in this procedure, Fldigi v3.20.x will be used.

35.1 USING DAX FOR OPERATING DIGITAL MODES

Digital Audio eXchange, DAX, is a standalone radio client application that facilitates the exchange of several kHz of audio data from a Slice Receiver with third-party programs on your PC by emulating a sound card interface. It is designed to provide you with the audio from a Slice Receiver so the limits on the Slice Receiver bandpass filter will set the limits on this audio passband. The Audio support is bi-directional meaning you can both RX and TX. DAX supports up to 8 channels in the radio depending on the radio model (see section 35.1.3 for details).

35.1.1 Connecting to the FLEX-6000 via DAX

To use DAX, there are two separate components; the DAX Control Panel which is a standalone application and a Slice Receiver in SmartSDR that passes audio to a DAX Channel, or a Panadapter that passes wide band IQ audio to a DAXIQ Channel.

35.1.2 SmartSDR for Windows Configuration with DAX Audio

Set DAX Audio Channel on Slice

Select one of the DAX channels in SmartSDR on a Slice Receiver. Each channel can be selected on only one Slice Receiver. The radio prevents selection of multiple Slices per channel. The selection is made in the DAX panel and the associated drop-down menu:
Set DAX Audio Source

If you intend to use DAX audio for transmit, select DAX as the input source for the audio in SmartSDR.

Enabling the MON (monitor) will allow you to listen to the transmitted signals.

Note: The audio input source selected in the drop-down box for audio will be used in situations where you initiate PTT with the front MIC or RCA jack on the back of the radio and you are in SSB, AM, FM or SAM mode.

35.1.3 DAX Control Panel Setup

The DAX control panel application starts automatically when Windows starts. Its icon should be found in the task bar. The control panel can be started and stopped in the conventional way but note that if the application is stopped while the radio is running, DAX channels connected to other applications will be disconnected.

The DAX control panel is divided into four main sections. The top section contains controls for the TX channel, the second section controls the MIC Stream, the third section controls the RX channels and the bottom section has controls for the DAX IQ channels. The number of controls available is dependent on the model of the radio as shown in the chart below:

<table>
<thead>
<tr>
<th>Radio Model</th>
<th>DAX Audio Channels</th>
<th>DAX IQ Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLEX-6700 / FLEX-6700R</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>FLEX-6600/M</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>FLEX-6500</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>FLEX-6400/M</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>FLEX-6300</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The software enables the first N of the DAX audio and DAXIQ channels where N is determined by the radio model, as shown above. Eight DAX channels and four DAXIQ channels are shown in drop down menus and in the DAX Control Panel, but only the first two or four of those channels will be usable depending on the model of the radio, as shown above.
Each of the DAX Audio channels has several controls. The first control is the enable button in the upper left of each channel. This button and the line of text below it control and display the state of each DAX channel. The channel button will generally be grey, and the text below will indicate that the channel is “Off.” A channel that is off will not request audio from the radio and will not stream any data to digital programs. To enable a DAX channel, press the channel button. The button should change color to blue and the status line should change to “Streaming.”

If there is any reason that data cannot be streamed from the radio to the PC, the DAX channel number will be either red or yellow, and the problem will be indicated in the status line below. Status messages and the action required to fix the issue are shown in the table below:

<table>
<thead>
<tr>
<th>Channel Indicator</th>
<th>Status Message</th>
<th>Issue / Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disabled</td>
<td>The DAX channel has not yet been enabled. To enable, press the DAX channel button</td>
</tr>
<tr>
<td></td>
<td>No Slice</td>
<td>A slice has not been assigned to the DAX channel in SmartSDR. Pick a slice in SmartSDR to stream audio to the channel by selecting the DAX channel in the slice flag.</td>
</tr>
<tr>
<td></td>
<td>No Data</td>
<td>The setup in SmartSDR and the DAX Control Panel are correct, but no data is being received from the radio. This could be a firewall issue in Windows or a setup issue in Windows. Check these items and if all else fails, try restarting SmartSDR and/or the radio</td>
</tr>
<tr>
<td></td>
<td>Not Connected</td>
<td>The DAX Control Panel is unable to connect to the radio. Ensure the radio is turned on and the LED on the front of the radio is solid green or blue. Check firewall settings in Windows to ensure DAX can communicate with the radio. Ensure the radio and computer are on the same TCP/IP subnet. Ensure that the Windows firewall or any third-party firewall is not blocking access.</td>
</tr>
<tr>
<td></td>
<td>Driver Error</td>
<td>DAX is unable to connect to the DAX RESERVED audio channels in Windows. Open the sound settings control in Windows and ensure that no audio devices are connected to these channels. The DAX Control Panel must be restarted after a driver error.</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td>DAX is connected to the radio and streaming data to an audio sound card in Windows. There are no setup errors.</td>
</tr>
</tbody>
</table>

More data on the nature of the problem and the status of the DAX channel can be found by hovering the mouse over either the DAX channel number or the status message in DAX.
A ToolTip box will appear with a more detailed status message and suggestions for corrective action as shown below:

In this case, the No Slice status was present, and the last line of the ToolTip box suggests selecting a DAX channel for a slice.

When a DAX Channel is set for a Slice Receiver, the DAX Control Panel(s) connected to the radio will also show the Slice Receiver that is connected to the DAX Channel as confirmation. When transmit is initiated by a digital mode program through CAT or other means, SmartSDR must decide which audio stream to send. First, the Slice Receiver that has been designated the transmitter in SmartSDR (red TX button on the Slice Receiver flag is illuminated) will be the Slice Receiver transmitting, as usual. If the DAX button is enabled in SmartSDR (in the transmit control panel), DAX will use the DAX source for the transmit audio. If a single DAX Control Panel is active and a single PC is being used, the transmit audio will come from the digital mode program connected to the DAX TX audio sound card.

DAX will allow multiple PCs to use the same DAX channel(s). For example, you could use two PCs to listen to the same frequency with different decoding programs. If more than one PC is used on the
same DAX channel, the TX selection in the DAX Control Panel will determine which PC will be the source of the transmit audio. If you select TX in one DAX control panel for a given DAX Channel, all other PCs will be deselected as the transmit audio source.

You can also see the data rate from the radio to the computer and the level being received from the radio listed in kbps while transmitting. Use the sliders to set audio levels while keeping the peaks ~6 dB below the maximum.

The DAX control panel retains a memory of its position and size on the desktop. If it is visible when Windows or the control panel is shut down, it will be visible when Windows or the control panel is restarted. Similarly, if it was minimized, it will be restored in minimized state.

35.1.4 DAX Channels to Sound Device Mappings

There is a four-to-one mapping between DAX channels and the sound devices that are available on your PC. Each DAX channel consists of an RX or receive audio link or conduit. There is one TX or transmit audio link as only one Slice Receiver can be transmitting at any point in time. Each link or conduit has two endpoints; a reserved endpoint that connects only to the radio and an audio endpoint that is connected to the digital modem program running on the PC. So, for each DAX Audio channel, you will see two RX sound cards and two TX sound cards.

Let's assume we're looking at DAX Channel #1. You will see:

- DAX AUDIO RX 1
- DAX RESERVED AUDIO RX 1

In addition, you will see the shared DAX transmit channel:

- DAX AUDIO TX
- DAX RESERVED AUDIO TX

You will connect your 3rd party software to the DAX AUDIO RX/TX sound cards.

Note: The channels marked RESERVED are for internal use in the DAX software, so you should never use them directly.

35.1.5 DAX TX Channel Switching

The DAX system implements a single dynamically switched transmit channel. There is no DAX TX channel number. Since only one Slice Receiver can be enabled to operate the transmitter at any given time, DAX automatically switches the DAX TX channel to the enabled Slice Receiver. To transmit audio supplied by the DAX TX channel, the channel must be enabled in the DAX control panel, and DAX must be selected as the input source in the P/CW panel.

If more than one DAX application is connected to the same radio (on separate PCs) and the selected Station is the same, the last DAX application to select the TX stream will provide the audio when in transmit and the other(s) will be marked Busy. If the Stations selected are different, then the appropriate DAX client TX data will be used when the Station goes into transmit.
Numerous digital modem programs can be configured to transmit via the shared DAX TX channel. At any point in time, at most one of these programs should be transmitting, and if all the criteria mentioned above are met, the DAX TX channel will be connected to that program.

35.1.6 **DAX TX Channel and Microphone Interaction**

When the DAX TX Channel has been selected to provide audio for the transmitter (DAX button in the transmit control panel), the radio will still accept audio from the selected microphone if the DAX TX stream contains no data. As soon as data appears, the DAX TX channel becomes the transmitted audio.

This feature is provided to support voice keyer configurations. The user can enable both the DAX TX channel and a microphone and use the microphone normally if the voice keyer program is not sending a message. When a voice keyer message is desired, the associated program simply plays the audio into the DAX TX channel and the transmitter automatically switches to it, overriding the microphone.

In a similar fashion, VOX can be triggered from either the DAX TX channel or the selected microphone audio. If the DAX TX channel information is above the VOX triggering level, DAX will key the radio.

35.1.7 **DAXIQ Configuration**

The second type of DAX channel, listed in the lower portion of the DAX Control Panel is the DAXIQ channel, of which there are four (all four may not be implemented on all radios). Each of these channels will stream wide-band IQ data to a client program. This allows decoding of multiple signals across large swaths of the amateur bands. The data provided in a DAXIQ channel is "raw I/Q" which has no demodulation, AGC, etc. applied to it. This is like getting a RAW file, instead of a JPG, out of a digital camera.

Set the DAXIQ Channel on a Panadapter

First select one of the four DAXIQ channels from the DAX menu on the Panadapter. Each channel can be selected on only one Panadapter. The radio prevents selection of multiple Panadapters per channel.
Set DAXIQ Stream in DAX Control Panel

On the DAX Control Panel, enable the stream that corresponds to the channel set in the SmartSDR Panadapter by clicking on the number. When enabled, the button will change to blue. Here you also can see the center frequency of the Panadapter and the Streaming status.

Like the TX stream mentioned above, the same conflict resolution is used when multiple DAX applications are connected to the same radio. If they both have the same Station selected, the last one to enable the channel (or launch the application) wins and the other(s) will be marked Busy. If they are on separate Stations, they can both stream concurrently.

NOTE: Each radio has a limited amount of DAX IQ resources. Using higher sample rates uses more of these resources. If a radio uses up the resources, the remaining DAX IQ channels on all DAX clients will be marked unavailable.
The DAX IQ channels have similar status states as the DAX Audio channels. A complete accounting of each state and the possible resolutions are detailed in the table below:

<table>
<thead>
<tr>
<th>Channel Indicator</th>
<th>Status Message</th>
<th>Issue / Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disabled</td>
<td>The DAX IQ channel has not yet been enabled. To enable, press the DAX IQ channel button</td>
</tr>
<tr>
<td></td>
<td>No Panadapter</td>
<td>A Panadapter has not been assigned to the DAX IQ channel in SmartSDR. Pick a Slice in SmartSDR to stream audio to the channel by selecting the DAX channel in the Panadapter DAX IQ settings.</td>
</tr>
<tr>
<td></td>
<td>No Data</td>
<td>The setup in SmartSDR and the DAX Control Panel are correct, but no data is being received from the radio. This could be a firewall issue in Windows or a setup issue in Windows. Check these items and if all else fails, try restarting SmartSDR and/or the radio</td>
</tr>
<tr>
<td></td>
<td>Busy</td>
<td>Only one computer at a time can be receiving DAX IQ data. The Busy indicator shows that another computer is receiving this DAX IQ channel. To correct, disable the DAX IQ channel on the other computer and the busy condition on this computer will automatically resolve</td>
</tr>
<tr>
<td></td>
<td>Not Connected</td>
<td>The DAX Control Panel is unable to connect to the radio. Ensure the radio is turned on and the LED on the front of the radio is solid green or blue. Check firewall settings in Windows to ensure DAX can communicate with the radio. Ensure the radio and computer are on the same TCP/IP subnet. Ensure that the Windows firewall or any third-party firewall is not blocking access.</td>
</tr>
<tr>
<td></td>
<td>Driver Error</td>
<td>DAX is unable to connect to the DAX RESERVED audio channels in Windows. Open the sound settings control in Windows and ensure that no audio devices are connected to these channels. The DAX Control Panel must be restarted after a driver error.</td>
</tr>
<tr>
<td></td>
<td>Streaming</td>
<td>DAX is connected to the radio and streaming data to an audio sound card in Windows. There are no setup errors.</td>
</tr>
</tbody>
</table>

35.2 ENABLING THE SMARTSDR CAT INTERFACE

SmartSDR CAT is a FLEX-6000 client application that translates serial port CAT commands into ethernet commands and is included with SmartSDR for Windows. It must be configured before setting up your digital mode configuration. Please refer to the SmartSDR CAT Software User’s Guide for detailed instructions for installing SmartSDR CAT.

After SmartSDR CAT is installed, the Radio and Station have been selected, note the virtual serial port number assigned to your FLEX-6000. The default FlexRadio virtual serial port is COM4 and will be used in this setup procedure.
35.3 CONFIGURING A PTT (KEYING) INTERFACE

To key the radio for transmitting digital modes either a CAT connection or serial port PTT interface can be used. The most common method is to use CAT commands to key and un-key the radio, but either a physical or virtual serial port can be used as well.

For this procedure, SmartSDR CAT will be used to key and un-key the radio via the SmartSDR CAT protocol. SmartSDR CAT will also properly translate Kenwood CAT commands too. Please refer to the SmartSDR CAT Software User’s Guide for additional information regarding the CAT protocol.

35.3.1 PTT Override when Operating Digital Modes

When operating in a non DIGx mode, using a hardware PTT such as the RCA PTT input on the back panel will override the input of DAX. This feature allows the user to override the DAX input with a PTT switch connected directly to the radio. Also, see section 35.1.6, DAX TX Channel and Microphone Interaction for additional information about coordinating the use of microphones and the DAX TX channel.

NOTE: With multiFLEX, hardware PTT inputs always key using the Local PTT Station (see section 21).

35.4 CONFIGURING THIRD-PARTY DIGITAL MODE PROGRAMS

Below are instructions for configuring third-party digital mode programs for use with FLEX-6000.

35.4.1 Setting up Fldigi

With most digital mode programs, you must configure the audio setup and CAT. Fldigi is no different. For this example, CAT will be configured first and then the audio setup.

NOTE: For the remainder of this example it is assumed that you have Fldigi installed on your computer. The download URL is: http://www.w1hkj.com/download.html

The SmartSDR-SliceA.xml RigCAT file is also needed. It can be downloaded by doing a right click and a “save as” on it from http://www.w1hkj.com/xmlarchives.html

Please review the Fldigi user documentation for installation instructions.
35.4.1.1 Fldigi RigCAT Configuration Steps

- Start Fldigi and open the Configure Menu
- Select the Rig Control menu option
- Click on the RigCAT tab
- Check the Use RigCAT checkbox
- Click on the Open button and select the SmartSDR-SliceA.xml file downloaded previously.
- In the Device drop down, select the FlexRadio virtual com port associated with your FLEX-6000. In this example, it is COM4 the default FlexRadio virtual com port.
- Change the Baud Rate to 9600
- Change the Stopbits to 1
- Make sure the CAT command for PTT option is checked
- Click on the Initialize button to make the connection to the FLEX-6000. If the connection is successful, the QSY button on the bottom right hand side of the Fldigi console will no longer be grayed-out and the frequency readout for slice A will be shown above the mode and Filter buttons on the Fldigi console.
- Click on the SAVE button to save the configuration changes

![Fldigi RigCAT Configuration Interface]

35.4.1.2 Fldigi Audio Configuration Steps

- Start Fldigi and open the Configure Menu
- Select the Sound Card menu option
- Click on the Devices tab
- Check the PortAudio option
- In the Capture drop-down box, select the PC sound card INPUT interface
- In the Playback drop-down box, select the PC sound card OUTPUT interface
Click on the **SAVE** button to save the configuration changes

Shown below is an example of the Fldigi Sound Card Configuration for DAX

Setting up FLDIGI to use DAX audio channels is done in the Fldigi configuration panel. Click Configure, Sound Card and the Audio Tab to bring up the sound card selection page. Using the PortAudio option, click the capture and playback selection boxes to choose the DAX channels you want to use.
Adjusting the Audio Gain Levels

For the transmit level setting, adjust the DAX TX Gain slider until the peak hold bar registers below 0 dB on the SmartSDR for Windows Audio Input Level meter to achieve the power output reasonable and customary for the digital mode you are operating.

Shown below is an example of the Fldigi Sound Card Configuration with a Physical Sound Card.
35.5 RTTY MODE

RTTY mode is a variant of DIGL mode, provided to facilitate tuning, click tuning and reporting of RTTY Mark frequency via CAT or the FlexLib API. In RTTY mode two fields appear in the DSP drop down menu in place of the APF/ANF sliders. These are the RTTY Mark and RTTY Shift values:

These values default to 2125 and 170 Hz respectively for operating at 45.5 baud, the standard for HF. The RTTY Mark is an IF shift of the Slice Receiver indicated frequency which allows click tuning and spot frequency reporting to third-party programs that expect the reported frequency to be the RTTY Mark frequency. For click tuning, place your mouse cursor on the Mark frequency (higher of the two tones) and double click. To the user, the IF shift at the RTTY Mark frequency is transparent since the slice seems to be tuned to the RTTY Mark.

The Slice Receiver filter is also IF shifted and the default filter presets (shown below) are centered between the RTTY Mark and Space frequencies.
35.6 DIGI MODE AUDIO OFFSETS

When operating the radio in DIGU or DIGL mode a receive filter Offset control is available in the DSP tab of the Slice Receiver. This control allows the operator to set the audio offset in Hertz of the center of the receiver’s bandpass preset filters. When click tuning a Slice Receiver with an Offset set to a non-zero value, the Slice Receiver’s frequency will be adjusted so that the center of the receiver’s bandpass filter will be tuned to the frequency that was click tuned. The default offset for DIGU is 1500 Hz and the default for DIGL is 2210 Hz.

This feature allows the operator to configure a narrow filter in DIGU or DIGL mode, then conveniently drop it over a signal of interest by simply double clicking on the signal.
HOW TO EXPORT TRANSMITTED AUDIO

SmartSDR provides a means to export digitized audio that appears at the transmitter's input. This audio is exported to the DAX MIC channel where it can be connected to any program that opens a sound card device.

The DAX MIC channel is controlled by the Mic Stream section of the DAX Control Panel:

![Mic Stream Control Panel]

The MIC stream is enabled and disabled by clicking the button in the upper left corner. The gain is controlled with the slider.

The DAX MIC channel is supplied by the audio source that has been selected in the P/CW panel. When the microphone or balanced input is selected, the audio received by the radio is digitized and sent to the DAX MIC channel while the channel is enabled. When one of the other audio sources is selected in the P/CW panel (e.g. LINE, ACC, PC) the audio is digitized and sent to the DAX MIC channel only when the transmitter is active.

Audio is sampled and digitized before the Equalization and Processing steps are performed, so it reflects the audio as presented to the radio. Since the DAX system runs independently of SmartSDR, the audio connected to the DAX MIC stream is available from the stream even if SmartSDR is not running.
37 HOW TO OPERATE USING WAVEFORMS

37.1 WHAT IS A WAVEFORM MODULE?

A Waveform Module or “waveform plug-in” adds signaling or mode capability to a FLEX-6000 Signature Series radio. Waveform Modules are installed and run inside the radio without any outside computer software, adding a new mode or capability into the FLEX-6000. Waveform Modules are tightly integrated with the radio stream and control data and don’t rely on extra accessories or software, such as sound cards, patch cables, virtual sound cards, serial ports, CAT or DAX to operate.

Waveform Modules that can be run without an external GUI effectively extend the waveforms into the remote realm -- if you create a digital voice waveform and load it in the radio, this can be used from the GUI when the radio is remote without any extra effort. Radio operators must decide about how much trouble they want to go through to use a new mode today. The objective of waveforms is to make this decision easier because once loaded, the mode becomes part of the radio’s normal mode list.

Waveform Modules may be implemented for signaling and digital modes such as RTTY and PSK-31 extending the capability of the radio. Waveform Modules also allow a user with appropriate programming skills to add modes or functionality to the FLEX-6000, by using a defined, open API (Application Programming Interface). If you are interested in writing your own Waveform Module, please refer to the documentation for the Waveform SDK (Software Development Kit). The open API allows full control of the radio, including filters, frequencies, transmit control, and access to both pre and post demodulation receive and both pre and post modulation transmit streams. Or, in other words, access to audio in and out, as well as baseband transmit and receive signals, in both the real and complex I-Q domains.

37.2 INSTALLING AND REMOVING A WAVEFORM MODULE

SmartSDR for Windows must already be installed on your Windows computer, prior to installing the Waveform application. The installation is a two-step process. First the waveform package installer is run to install a waveform specific GUI program (this is waveform dependent and a GUI may not be included with all waveforms) and stores the waveform plug-in on your computer. Then SmartSDR is run and used to install the waveform plug-in from the Windows computer into the target FLEX-6000. Second, the waveform plug-in is installed in the FLEX-6000.

The Waveform Installer, which is a Windows executable, can be downloaded from the FlexRadio web site and placed anywhere convenient, such as your desktop. Double click on the installer to begin the waveform installation. It will install the Waveform GUI application (if any) and install the radio waveform plugin in the standard Waveform folder.

After the waveform installer has been run, power up the FLEX-6000, start SmartSDR for Windows and connect to your radio. Once it has connected, open the “Files” menu and select “Waveform” to open the Waveform Manager. If no previous waveforms have been installed, the WaveformManager window will be empty as shown below.
Press the “Install...” button, to bring up the Windows Explorer file select window for Waveforms. Select a waveform plug-in to install into the FLEX-6000.

For this example, the name of the waveform plug-in file is “FreeDV.ssdr_waveform.” Double click on the entry with this name, or single click and press the “Open” button. “FreeDV v1.0.3” should now be installed in the WaveformManager window as shown below. Close the WaveformManager window when done.
The Waveform Application is now installed in both the Windows computer and the radio. Any Waveform modules may be uninstalled by opening the window above and selecting the module for removal, then pressing the “Uninstall” button.

To uninstall a Waveform, open the Waveform Manager, select the appropriate wave form and click on the Uninstall button.

Δ – Resetting the radio data base will erase any Waveform modules installed inside the radio. The original copy is still stored in the SmartSDR application in the Windows control computer and can easily be re-installed into the radio by opening the File/Waveform/Installer-Window and repeating the installation step above.

37.3 OPERATING A WAVEFORM MODULE

The Waveform Module extends the capability of the radio by adding additional modes. When installed, an additional mode button may appear alongside the existing mode buttons, such as the case of FreeDV/Codec2 adding a mode button labeled FDV alongside USB, LSB, FM, etc. Some Waveform applications will not require any further controls or displays other than the mode button. If additional GUI capability is needed, it will generally appear in a separate window. So, general operation of the radio in the new added mode should be like existing operation. Instructions on how to operate any added user interface (GUI) will be included as part of the module specific documentation included as part of the module distribution.

Δ – The Waveform module adds an extra signal processing load on the radio. It is possible that running a radio at or close to maximum processing capability and then adding a Waveform module load could degrade the overall performance of the radio. In this case, it may be necessary to reduce the total number of open receiver Slices, until the performance is acceptable.
38 HOW TO OPERATE IN FULL DUPLEX (FDX) MODE

All FLEX-6000 Signature Series Transceivers are inherently capable of full duplex operation. In normal simplex operation, all Slice Receivers are muted when transmitting. When Full Duplex (FDX) is enabled, the transmitting Slice Receiver is muted along with all other Slice Receivers on the same antenna. Receivers located on different antennas from the transmitter are not muted during transmission.

FDX is only possible if the two (or more) Slice Receivers are using separate physically isolated antennas. Since at least two receivers are used, two or more frequencies may be heard simultaneously when in receive. When the radio is switched to transmit, the transmitting Slice Receiver will no longer emit receive audio, but the other receivers will continue to receive.

The transmitting Slice Receiver is muted primarily because it contains a delayed version of the radio’s transmit signal. This delayed transmit signal results in operator confusion if heard at the same time transmit audio is being produced. If hearing this signal is the desired goal, another Slice Receiver may be placed on the same frequency as the transmit slice. This receiver will not be muted and delayed transmit audio can be heard if the receiver’s receiving antenna is different from the transmit antenna.

38.1 FDX REQUIREMENTS

To use FDX mode, the following requirements must be met:

- The transmitting antenna and receive antenna must be different
- The transmitting Slice Receiver and receiving Slice Receivers must be different (two or more receivers must be used)
- The radio must be placed into FDX mode
- The signal level of the received transmit signal coming into the receive antenna must be below the overload threshold of the Spectral Capture Unit (SCU, details below)

The first three steps involve setting up the radio properly, but the fourth step requires understanding your antenna system and signal level environment in detail by performing the necessary calculations to ensure proper operation. A detailed explanation of this and working examples are provided below.

38.2 FDX APPLICATIONS

There are several immediate applications of FDX mode:

- FLEX-6600/M and FLEX-6700 Single Operator Two Radio (SO2R) operation
- Listening to your own TX signal for the purposes of tailoring your TX audio
- Full Duplex amateur satellite operation using appropriate transverters

SO2R mode is used by single operator contesters to boost scores by listening on two bands simultaneously and alternating the transmit band, interleaving listening and transmitting tasks. As always, consult the contest rules for any requirements or restrictions on operating in this manner. With SmartSDR v1.5 and greater, SO2R operation is only possible on the FLEX-6700 and FLEX-6600/M.
38.3 FDX CAPABILITIES BY RADIO MODEL

The capabilities and rules for FDX operation vary by model as defined by its respective hardware capabilities. Specifics for each model are as follows.

38.3.1 FLEX-6600M / FLEX-6700 SO2R Operation

The FLEX-6600/M and FLEX-6700 incorporate two independent, full performance Spectral Capture Units (SCUs), each with their own band pass filter pre-selectors. This means that these radios can simultaneously receive on two separate antennas. With FDX engaged, it is possible to listen on one antenna/band while transmitting on another - given sufficient antenna isolation is provided.

Alternately, RX A, RX B, or XVTR may be used as receive-only ports. The internal pre-selectors on the FLEX-6600/m and FLEX-6700 provide a minimum of 20 dB band to band rejection. With antenna isolation of at least 40 dB, cross band SO2R operation without external filtering is practical. For high power operation and sites with less antenna isolation, external transmit band pass filters must be added to increase isolation.

Please refer to the SO2R Mode with N1MM for the FLEX-6700 How to Guide for step-by-step setup instructions for operating a FLEX-6600/M or FLEX-6700 with N1MM in SO2R mode.

A default Global profile, SO2RDefault, is provides a starting point for configuring the radio for SO2R operation.
38.3.2 FLEX-6300 and FLEX-6500 Full Duplex

Both the FLEX-6300 and FLEX-6500 models are enabled for full duplex operation using XVTR as a receive-only port so long as at least 70 dB of port to port isolation is provided for a 100W station. This may be provided through a combination of antenna isolation and external band pass filtering for cross band operation. RX A may alternately be used on the FLEX-6500. This feature can also be used for satellite operation with suitable transverter support.

38.4 SCU OVERLOAD FUNDAMENTALS

All radios are susceptible to overload. Overload conditions caused by a signal level that is too high can result in compromised performance, the inability to receive or even receiver damage. An understanding of how overload occurs and methods to avoid it is required for proper operation of a radio in full duplex mode.
The Spectral Capture Units (SCU) in the FLEX-6000 transceivers contain three primary component blocks:

- Preselection band filters (except in FLEX-6300)
- A preamplifier / attenuator
- A high-performance analog to digital converter (ADC) also known as a digitizer

Each of these blocks plays a role in receiver performance and must be considered when planning full duplex operation.

38.4.1 Preselection Band Filter Block

Preselection band filters, when present and active, can reduce out of band signal levels by 20dB or more. Preselection band filters are enabled by default in the FLEX-6400/M, FLEX-6500 and FLEX-6700 any time the radio is not in the WIDE mode. An indicator in the upper right corner of the panadapter will show when the radio is in the WIDE mode and pre-selectors are not enabled. The FLEX-6300 is always in WIDE mode since it does not have preselection band filters, but this is not indicated in the panadapter.

For the purposes of calculations, assume a 20dB reduction in out-of-band signals when the preselection band filters are enabled.

Example 1: FLEX-6500 with two Slice Receivers on 20m in a single panadapter. Both receivers are set to listen on RXA and transmit on ANT1. The WIDE indicator is not present in the panadapter. In this case, the pre-selector filter for 20m is enabled, but the receiver and transmitter are on the same band. The pre-selector will not reduce the transmit signal (it is in-band) and no 20dB reduction in signal can be used for calculations.

Example 2: FLEX-6500 with two Slice Receivers, one on 20m, one on 40m in two panadapters. Both Slice Receivers are set to receive on RXA and transmit on ANT1. Because two different bands are received on the same antenna, WIDE mode is indicated in both panadapters. Preselection band filters are not used and a 20dB reduction in signal cannot be used for calculations.

Example 3: FLEX-6700 with two Slice Receivers, one listening on 20m and one on 40m in two panadapters. Slice A is set to receive on RXA and transmit on ANT1. Slice B is set to receive on RXB and transmit on ANT1. Neither panadapters indicate WIDE. In this case, preselection band filters are enabled on both bands and a 20dB reduction can be used in calculations.

38.4.2 Preamplifier / Attenuator Block

The preamplifier / attenuator block can raise or reduce signals before they are sampled in the ADC block. The overload limit of the SCU is reduced by any gain that is added by the preamplifier. For example, if 10dB of gain is selected using the preamplifier selection under the antenna controls in the panadapter, this 10dB addition must be factored into the overload calculations. The same holds for other amplification levels: if +20dB or +30dB are selected, the respective value must be added to overload calculations. You should only use pre-amplification when necessary and only what is required to raise the noise level in the receiver by 8-10dB over the noise level when the antenna is disconnected.
The preamplifier has protection circuitry to prevent damage above levels of +10dBm. This protection circuitry will cause distortion in received signals if the level exceeds +10dBm. For this reason, preamplification should not be used when the input signal level will meet or exceed +10dBm. When performing all testing of a full duplex configuration, it is highly recommended that the preamplifier be disengaged until it can be determined that the power level from the transmitter will not reach +10dBm in any operating scenario.

38.4.3 High-Performance Analog to Digital Converter Block (ADC)

The ADC block, or digitizer, converts the received signals into digital data. All ADCs have overload points and damage points, but there is some variability in overload symptoms. With the FLEX-6000 Signature Series radios, the ADC overload point varies from +7dBm (FLEX-6300) to +9dBm (FLEX-6500 and FLEX-6700). This overload point is a “soft overload” meaning that at this point the receiver will begin to show a performance drop. The ADC generally functions better with increasing signal levels up to this point. At the soft overload point, the receiver will begin to develop spurs that will appear in the panadapter and these spurs will grow as power is increased. A digital overload point will be reached around +12dBm (level varies by receiver) at which point the receiver will cease to function normally, producing substantial distortion in received signals and rendering reception difficult.

At levels above +15dBm (level varies by receiver), the ADC can be damaged so the FLEX-6000 contains circuitry to disengage the ADC from the antenna. While circuitry should protect the radio from a damaging signal, it is highly recommended that station configuration be designed such that signal levels above the soft overload point are prevented from entering the antenna connector of the radio. FlexRadio Systems assumes no responsibility for damage incurred from high signal levels entering the receiver.
38.5 FULL DUPLEX ANTENNA ISOLATION REQUIREMENTS

For successful FDX operation, it is essential to understand and plan for sufficient transmit to receive antenna isolation to prevent receiver overload and/or damage. The FLEX-6000 FDX Power Calculation Worksheet can aid in the calculation of antenna isolation and power levels that are suitable for a specific station.

The FLEX-6000 Signature Series transceivers are designed to disconnect the receiver from the antenna when signal levels are +18 dBm to +22 dBm depending on frequency. The front-end protection circuits will begin to engage at approximately +15 dBm. Front-end overload of the SCU will occur with a single tone in the range of +8 dBm with the preamp off. Increasing the preamp gain will lower the overload point by the amount of the added gain.

To provide suitable headroom to prevent SCU overload, we recommend that transmit to received signal strength be limited to a worst case of -20 dBm or lower at the antenna input. With 20 dB of preamp gain, this would provide a single tone input of 0 dBm to the A/D converter leaving about 8 dB of headroom. More isolation is better.

One of the best resources for information on achieving antenna isolation is:

"Managing Interstation Interference, Revised Second Edition" by George Cutsogeorge, W2VJN.
39 RADIO SETUP

39.1 INTRODUCTION

The Radio Setup menu, located in the Settings menu of the main SmartSDR window, is used to configure various settings of the radio.

39.2 CONFIGURING A RADIO

To configure a radio, select the radio you wish to connect to from the SmartSDR start screen. Once selected, the radio will be highlighted in blue. Double click the radio to start it. Open the Settings menu from the main window menu list. Use the tabs toward the top of the window to navigate to the different areas for configuration.

39.3 RADIO TAB

Located in the “Radio” tab is basic information about the selected radio. The tab contains the radio serial number, installed options and hardware version. Radio Hardware version refers to the software and firmware that is loaded into the radio itself.

The “Region” indicator which displays the country for which the radios transmit capabilities are based. The button opens an explorer window to select a TURF file for changing the region. A TURF file is supplied by FlexRadio Systems or the international distributor where the radio was purchased. Navigate to the TURF file and click “Open”. The radio will automatically update the radio to the new region.
Next is the Remote On enable/disable control. When blue, Remote On is enabled, when grey, remote on is disabled. Closing the rear panel RCA connector (ground the center pin) will power up the radio. Opening the RCA contact will power down the radio.

There is an option to enable/disable the FlexControl by clicking the . When blue the FlexControl is enabled, when grey the FlexControl is disabled and will no longer control SmartSDR.

In the Radio Identification section, there are three modes for identifying your radio in the OLED display on the front panel of some radio models, Nickname, Callsign and Model. After entering a Nickname or Callsign, clicking the buttons beside the text will cause the corresponding information to appear on the front of the radio. When the selected option is active the button beside it will illuminate blue. For example, the Model button is enabled displaying "FLEX-6700" on the OLED display.

The backlight section controls the intensity of the radio's front panel backlight on those models that have this feature.

The next section contains controls for adjusting focus integration controls. This allows the user to pass the mouse and keyboard focus back to the third-party program of their choice. Currently N1MM, N3FJP, WriteLog and Win-Test have all been tested and preset in SmartSDR. An “Other” setting is also included to enable use with other logging programs not formally supported.

The delay control adjusts the wait time for SmartSDR to pass the focus back to the selected program.

When a preset application is selected in the drop-down menu, a textbox becomes available to adjust the UDP Port which is the receiving port for the application. Modification of the selected application’s configuration file is required, and both must agree with the port number entered.

![UDP Port: 12060]

When “Other” is selected from the drop-down menu then a textbox becomes available to adjust the name of the window that will be receiving the focus.
39.4 NETWORK TAB

The network tab offers information and settings related to the radio’s network connection.

![Network Tab Screenshot]

The Network tab contains the IP address, sub-net mask and MAC address in use by the radio.

Pressing the Advanced button reveals controls that allow the user to assign a fixed IP address to the radio.

The MTU setting (industry standard default 1500) can be used in situations where connecting via SmartLink will not pass Panadapter or Waterfall data as a result of larger packets being dropped. Try using incrementally smaller values until it works.

Press the Static button then enter the desired IP address, sub-net mask and gateway address. Press Apply. The radio will reboot. SmartSDR will lose its connection to the radio and will return to the Startup screen. The radio can be returned to dynamic IP address assignment by use of the DHCP button. These controls are not available when accessing the radio via SmartLink.

The Enforce Private IP Connections button enables (default) and disables a network security feature. When enabled, only private network IP addresses may connect to the radio when the radio is connected to a private network. These are the 10.0.0.0 - 10.255.255.255, 172.16.0.0 - 172.31.255.255 and 192.168.0.0 - 192.168.255.255 address blocks. When disabled, any address may connect.

NOTE: This is not recommended for most users and puts your radio at risk of being accessed from outside your network without authentication such as SmartLink. This should only be used if you understand network security and the associated risks.
39.5 GPS TAB

The “GPS” tab provides the option to Install or Uninstall a GPS module in the software. This option is not available on the FLEX-6300. If your radio has a GPS module installed from the factory, this process should already be complete. If you are installing the GPS module after the fact you will need to click to test for the GPS and enable the GPS functionality. If the installation has been successful, you will see: toward the top of the panel.

When removing the GPS or if you would like to bypass the GPS you will click to disable GPS functionality.

If no GPS device is present in the radio, the and buttons have no effect.

The lower portion of the GPS tab displays information collected from the GPS module. This information includes:

- Latitude
- Longitude
- Grid Square
- Altitude
- Sat Tracked - Number of Satellites being tracked by the GPS
- Sat Visible - Total number of satellites that should be visible to the GPS currently
- Speed - Speed of your radio in knots along the surface of the Earth
- Freq Error - Average error in the frequency of the 10MHz output from the GPS. If you multiply this number by your current frequency, it is the GPS's report of how far off frequency you could be.
- Status - Displays the status of the GPS Module. One of six modes will be displayed:
 - Not Present
 - Holdover
 - Locking
 - Locked
 - Holdphase
 - Warm up
 - UTC Time
The TX tab offers adjustments timings, interlocks and global transmit parameters.

The **Timings** section has adjustments for RCA TX1, TX2 and TX3 (only TX1 on FLEX-6300) as well as the Accessory TX, TX Delay and TX Timeout. Each of these controls is measured in Milliseconds (ms). Each of the TX1, 2, 3 timings act independently and start measuring from the moment a microphone PTT switch is depressed, a CW paddle is keyed, etc. RF is transmitted as soon as the largest of the TX1, 2, 3, and ACC_TX delays have elapsed if TX Delay is set to zero. Otherwise TX Delay value is added to the maximum of TX1, 2, 3 and ACC_TX. Note that each of these timing settings are global to the radio. Whether the fields are active is set by band in the TX Band Settings Window which can be opened with the **TX Band Settings** button.

The **Interlocks** section offers three setting for RCA TX and Accessory TX: Disabled, Active High and Active Low. The FLEX-6300 does not have interlock settings for RCA. In the **Disabled** position, the connector or accessory pin will not perform any function. In the **Active Low** setting, transmit will be prevented if the connector/pin are driven to ground. In the **Active High** setting, transmit will be prevented if the connector/pin are “high” or driven to some voltage level above ~1.5V.

To interlock two FLEX-6000s for Multi/2 operation, for example, the following actions should be performed:
1. Run an RCA cable from TX1 (or TX2 or TX3) of radio #1 to the TXREQ connector on radio #2
2. Run an RCA cable from TX1 (or TX2 or TX3) of radio #2 to the TXREQ connector on radio #1
3. Enable the respective TX1/2/3 outputs by clicking the Disabled button for the appropriate TX1/2/3 output on each radio in the transmit tab (enable the output for the port you are using in steps 1 and 2)
4. Enable the interlock on both radios by selecting Active Low in the Interlocks – TX REQ section for the RCA cable
5. Test to ensure proper operation: ensure that radio #2 cannot transmit while #1 is transmitting and vice versa. When testing, use the information below to ensure proper operation

When the interlock is active, meaning the radio will not transmit even though actions that would normally cause the radio to transmit (PTT is pressed, the CW paddles are being keyed, CAT is attempting to transmit, etc.), the radio will:

1. Change the color of the LED on the front panel of the radio from green (receive) to red (transmit).
2. All relays in the radio will engage to start transmission
3. PA finals in the radio will be biased for transmit
4. The waterfall will indicate that the radio is in transmit
5. If in CW, sidetone will be heard as if the radio is transmitting
6. But NO power will emanate from the radio meaning the power meter will show no power out, the panadapter will show no power out and the TX indicator at the lower right of SmartSDR will not change to a red TX

The indicator in the lower right corner of SmartSDR will always indicate the reason that the radio will not transmit and why:

This shows that transmit is being inhibited by the RCA TXREQ line on the rear of the radio. Once the TXREQ line is cleared, the indicator will revert to a normal transmit indicator:

The Max Power text box allows the user to manually set the radio’s maximum output power on ANT1 and ANT2, when using the PA. This control sets the maximum value of the RF Power slider on the RF
Power / ATU Control Panel (section 41.7.1). Transmit power set by third party programs will be limited to this value.

The user can also enable/disable the Hardware ALC by clicking on [Disabled] or [Enabled]. When blue Hardware ALC is enabled, when grey it is Disabled.

⚠️ Please note this input is provided as a safety measure for external amplifiers. It is NOT meant to be used in regular operation as an active power control input or to modify the “attack” of an external amplifier. Almost all modern HF amplifier manufacturers discourage the use of ALC in normal operation. In fact, many amplifiers do not have ALC implemented.

By default, SmartSDR does not show your transmit signal in the Waterfall so that the Waterfall does not display data that may not be useful to you. Instead it will display a single white line while in transmit. When enabled, the Show TX in Waterfall setting will cause the Waterfall to show the data of your transmission.

39.7 PHONE/CW TAB

![Image of Radio Setup panel showing phone/cw tab options]

- BIAS: +20dB
- Enable/Disable the level meter during receive
- CW Tab: Enabled A B
- Swap: Dot/Dash
- Sideband: CWU CWL
- CW: Sync
- Digital RTTY Mark Default: 2125
BIAS button: Clicking this button will enable the microphone BIAS voltage on the MIC connector. Enable the BIAS only if the microphone being used requires the voltage to operate, such as microphones with condenser elements. The bias voltage varies with the FLEX-6000 Series model. FLEX-6300, 6500 and 6700 provide 5 volts DC. FLEX-6400 and 6600 provide 3 volts DC.

+20dB button: Clicking this button will enable the +20 dB gain microphone preamp.

Note: The +20 dB microphone preamp option should always be enabled whenever a microphone is directly connected the FLEX-6000. This option is not available when LINE is selected as the audio input.

Disable/Enable Mic Meter button: Enables or disables the Mic Meter during receive.

Buttons are found on the Phone/CW tab to toggle iambic mode and paddle swap for dot/dash. Iambic can be enabled or disabled in either mode A or mode B configurations. Blue signifies selected mode [A B].

There are two settings for the Key configuration, Dot/Dash and Dash/Dot. Dot/Dash indicates the left paddle is the dot and the right is the dash. When Dash/Dot is selected, the button will highlight blue [Dash/Dot].

There is also a selection for upper (CWU, default) or lower sideband (CWL) for CW Operation. CWL and CWU alter tone pitch with tune direction in a similar way to upper and lower sideband decoding.

39.8 RX TAB

The receive tab offers settings to calibrate the local oscillator, select the 10 MHz reference signal and other global receiver settings.
Calibrate the local oscillator by performing the following steps:

1. Select a signal of known frequency, with strength greater than S6. In the US, WWV is a good choice.
2. Enter the known frequency in the **Calibration Frequency** field
3. Click **Start**

The radio will tune to the signal and compare its tuned frequency to the declared frequency. The difference will appear in the **Offset** field. You can also enter a value directly into the **Offset** field.

NOTE: When running the frequency calibration, the radio uses Slice A and ANT-1 regardless of the radio's slice/antenna configuration. The frequency calibration should be run in a single Station configuration (as opposed to multiple connected Stations via multiFLEX) for best results.

The 10 MHz Reference section offers a selection of 10 MHz signal sources that calibrate the local 10 MHz master oscillator. This feature is only available on the FLEX-6400/M and FLEX-6600M (not in the FLEX-6300, FLEX-6500 or FLEX-6700).
The radio monitors each of the inputs and indicates which have a signal present with the blue marker. The Temperature Compensated Crystal Oscillator (TCXO) is part of the radio hardware and is always available. When one of the three inputs is selected, using the menu shown above, the radio will use that input regardless of the presence of a signal. The master oscillator status is shown to the right of the selection list. When the master oscillator is trying to lock to the selected input, the status message will say “searching”. When it is locked, it will say “Locked”.

In **Auto** mode, the radio monitors each of the inputs and selects an input that offers a signal in priority order. The highest priority signal is the External 10 MHz signal (optional), followed by the GPSDO signal (optional), followed by the TCXO signal (always provided). The radio will track changes in the availability of the signals. For instance, if the External 10 MHz signal appears, the radio will switch to it from the GPSDO or TCXO signal.

Snap to Tune Step: This feature will allow the user to adjust whether features like Drag Tune or Click Tune will snap (or round the frequency) to the closest tune step size. For example, if your tune step is set to 10Hz then the Slice Receiver will snap to every round 10 Hz (i.e. 14.100.000, 14.100.010, 14.100.020) increment regardless of the tuning method when tuning outside of the Slice Receiver passband. When this feature is disabled it will allow the receiver to be tuned in 1 Hz steps.

Single Click to Tune: When enabled, a single left-click of the mouse in a panadapter will tune the nearest Slice Receiver to the frequency pointed to by the mouse. When disabled, a double click is required.

Start Slices Minimized: When enabled, new Slice Receivers are started in minimized form. Click the Slice Receiver letter (A, B, C ...) to maximize the display.

Mute local audio when remote: When selected, audio generated by the radio will be muted when the radio is operated from a remote client.

Binaural Audio: Enabling this global option will produce a virtual 3D spatial depth of field listening sensation by shifting the phase of the recovered audio relative to one channel of the speakers or headphones. The effect may enhance weak signal reception.

Front panel Speaker: If using a FLEX-6400M/FLEX-6600M, an option will be shown to enable/disable the front panel speaker.
The three sliders in the Filters tab control the RX filter sharpness/latency for the three mode groups, Voice (USB/LSB/AM/SAM/FM), CW and Digital (DIGU, DIGL, DFM, RTTY). The processing time, or latency, of the digital RX filters increases as the slider is moved to the right. Sharper filters require more processing time. In applications requiring fast turnaround of signals (e.g. certain contest environments), faster filtering of the received signal may be more desirable than adjacent signal rejection.

When Auto is selected for a mode group, the sharpness of the filter depends on the bandwidth of the filter. In general, the filter gets sharper, but slower, as the bandwidth narrows. In the following, Level 0 is the lowest latency (least sharp) and Level 3 is the highest latency (most sharp).

- DIGU/DIGL
 - Bandwidth from zero to 500 Hz: Level 3
 - Bandwidth from 500 to 1000 Hz: Level 2
 - Bandwidth from 1000 to 2000 Hz: Level 1
 - Bandwidth from 2000 to 10000 Hz: Level 0
- RTTY
 - Bandwidth from zero to 400 Hz: Level 3
 - Bandwidth from 400 to 1000 Hz: Level 2
 - Bandwidth from 1000 to 1200 Hz: Level 0
- CW
 - Bandwidth from zero to 400 Hz: Level 3
 - Bandwidth from 400 to 1000 Hz: Level 2
 - Bandwidth from 1000 to 1500 Hz: Level 1
 - Bandwidth from 1500 to 10000 Hz: Level 0
• USB/LSB/AM/SAM
 o Level 3 for all bandwidths
• FM/NFM/DFM
 o Level 0 for all bandwidths

All TX filtering is performed with low latency (less sharp) filters, but SmartSDR will sharpen the TX filters as necessary to prevent any signal being emitted outside of the lower limit set by the Lo Cut control. See section 41.7.4, Voice Mode Panel for more information.

39.10 XVTR TAB

![XVTR Tab Image]

The XVTR Tab allows the user to set up transverter bands for the FLEX-6000. Clicking the ‘+’ will create a new tab for a new transverter band. Refer to the section How to Configure Transverters for detailed information on configuring transverters.
40 RESTORING TO FACTORY DEFAULTS

Restoring the radio to factory defaults will clear any installed waveform modules, persistence and profile data in the radio and return it back to its original state. Default profiles are restored if they had been deleted. It is recommended that you make a backup of your Global, Transmit and MIC profiles before resetting the radio back to factory defaults.

NOTE: This should only be used as a last resort. If you are having trouble with your radio, please submit a HelpDesk support request.

FLEX-6700 and FLEX-6500 Reset Procedure

With the radio powered off, press and hold down the “OK” button on the front panel of the radio. Momentarily press and release the power button to power on the radio. Continue holding in the OK button until the front display counts down to 0, the power LED starts blinking white and the “CALIBRATING...” message is displayed, then release the OK button. Allow the radio to continue booting normally.

FLEX-6300, FLEX-6400/M, FLEX-6600/M Reset Procedure

With the radio powered off, press and hold down the power button until the Power LED blinks white, then release the power button. Allow the radio to continue booting normally.
41 MAIN WINDOW

41.1 INTRODUCTION

The Main Window of SmartSDR is where the primary operation of the radio will occur. Inside this window there is a Top Menu Bar, Bottom Menu Bar, and Tiles.

41.2 UPPER MENU BAR

Located in the top menu bar are a series of drop-down menus “File”, “Settings”, “Profiles” and “Help”. You will also find the PC Audio button as well as controls for speaker and headphone volume.

41.2.1 Menus

- The File menu contains the following selections:
 - Exit – SmartSDR disconnects from the radio and terminates
 - Waveforms – Opens the Waveform Manager (see section 37)
- The Settings menu contains the following selections:
 - Choose Radio – xxx Disconnects SmartSDR from the radio and opens the Radio Chooser.
 - FlexControl – Opens the FlexControl Setup window for configuring the functions of the FlexControl. See section 17.
 - Network – Opens the Network Diagnostics window. See section 21.6.2.
 - Memory – Opens the Memory Channels window. See section 26.3.
 - USB Cables – Opens the USB Cables windows. See section 34.
 - Spots – Opens the Spot Setting window. See section 30, Displaying Spots in SmartSDR for Windows.
 - multiFLEX – Opens the multiFLEX Dashboard. See section 4.
 - TX Band Settings – Opens the TX Band Settings window. See section 20.
 - Autostart Cat with SmartSDR – When selected, the SmartSDR CAT subsystem starts and terminates with SmartSDR. When not selected, CAT can be started and terminated manually.
 - Autostart DAX with SmartSDR – When selected, the DAX subsystem starts and terminates with SmartSDR. When not selected, DAX can be started and terminated manually.
- The Profiles menu contains the controls for using Profiles. See section 18
- The Help menu contains the following selections:
 - Help Desk - Launches the default web browser and navigates to the FlexRadio help desk web site (https://helpdesk.flexradio.com).
 - Community – Launches the default web browser and navigates to the FlexRadio user community (https://community.flexradio.com/home).
41.2.2 Volume Controls

In this section, there are two rows of controls. The first row controls the speaker volume for the radio’s powered speakers. By clicking , you will mute the audio of any speakers connected to the PWR SPKR plug. After muting, the icon will show a red circle with a cross through it . Located to the right of this button is the Speaker Volume slider . Adjusting the silver circle to the left or to the right will decrease or increase respectively your speaker volume. The Headphone Volume controls behave the same way as the icon will display when muted. Likewise, with the Headphone Volume slider , will adjust the volume of any headphones connected to the radio.

41.3 LOWER MENU BAR

Located in the Lower Menu bar you will find a series of controls for initiating items within SmartSDR. You will also find a Transmit indicator and a Date/Time indicator.

41.3.1 Application Launcher

In the application launcher, you will find a series of controls which will initiate applications within the SmartSDR infrastructure.

The first control will add another Panadapter to the Main Window. This control will turn to a dark shade of grey when you have used up the available Panadapter resources.

The second control will launch or hide the Transmit Control Panel. This panel will appear vertically on the right side of the Main Window of SmartSDR. Once the Transmit Panel is opened it can be closed by clicking the icon again.

The third control will globally toggle on and off the Tracking Notch Filters that have been placed. When disabled, the TNF(s) will turn to a shade of white on the Panadapter.

The fourth control will launch or hide the CWX panel. This panel will appear vertically on the left side of the Main Window of SmartSDR. Once the CWX Panel is opened it can be closed by clicking the icon again.
The fifth control will enable and disable Full Duplex (FDX) mode.

41.3.2 GPS Indicator

- FLASHING YELLOW = GPS in warm up
- SOLID YELLOW = GPS in holdover (lost satellites)
- SHORT FLASH BLUE = GPS locking
- LONG FLASH BLUE = GPS in hold phase mode
- SOLID BLUE = GPS locked
- SOLID AMBER = Radio off, GPS powered for stability
41.3.3 Transmit Indicator

The Transmit indicator is designed to inform the user of the current state of the radio transmitter. The smaller text below the “TX” describes the status of the transmitter.

- No TX select in any slice receiver, or FLEX-6700R
- Ready to transmit
- Transmit Slice Receiver is out of band, or Ethernet interlock not ready
- Transmitting
- TX Fault due to interlock error. Requires unkey to clear.

41.3.4 Date/Time Indicator

The Date/Time Indicator gathers data from your computer’s clock. Today’s date is listed on the first line and the current time in Greenwich Mean Time (GMT) on a 24-hour scale is on the second line.
41.4 ORGANIZATION AND ARRANGEMENT

This section describes the organization and arrangement of the Main Window of SmartSDR. This will include the organization of the Tiles within the window as they resize and reorder with user input.

41.5 PANAFALL (PANADAPTER/WATERFALL)

41.5.1 Panadapter Definition

A Panadapter is a visual spectrum display of radio frequencies (RF). Frequency is listed along the horizontal axis from lower to higher frequency, from left to right, measured in Megahertz (MHz). Amplitude is shown on the vertical axis measured in decibels (dB). The moving white line represents RF coming into the radio. The Panadapter is where most radio operation will occur. The FLEX-6000 series radios can display multiple Panadapters simultaneously each with their own frequency and bandwidth.
41.5.2 Waterfall Definition

A Waterfall is a historical representation of the frequency data over time. Frequency is listed along the horizontal axis from lower to higher frequency, from left to right, measured in Megahertz (MHz). Time is listed on the vertical axis where the most recent data is at the top and the oldest data is on the bottom.
41.5.3 Panadapter Menu

A set of menu options at the left side of the Panadapter control various functions of the Panadapter.

The **Hide Menu** button collapses the Panadapter menu so that it is no longer obstructing the view of the Panadapter. When clicked, it appears with an arrow pointing to the right. Clicking the button again expands the menu back to its default state.

The **Add Slice Receiver** button places an additional Slice Receiver resource inside the Panadapter. When you have utilized all your available Slice Receiver resources the **Add Slice Receiver** button is dimmed indicating that the action is no longer available. It will return to an available state once a Slice Receiver is closed.

The **Add Tracking Notch** Filter button places a TNF in the center of your slice filter. If no slice is available, the TNF will be placed at the center of the Panadapter.

The **Band** menu button exposes the Band Menu. Selecting a band from this list will adjust the Panadapter display to lie within the selected amateur radio band. One band can be selected at a time and allows for rapid switching between views of the amateur radio bands. Clicking the Band menu button again will collapse the menu.
The RX ANT drop down menu allows you to select the antenna that you would like to use for receiving within this Panadapter. This will dictate which antenna is supplying the RF for the frequency display as well as the receive audio for the Slice Receivers within the Panadapter.

The Loop buttons will toggle on (Blue) and off (Grey) the LoopA or LoopB ports. The FLEX-6500 only has one loop option. The FLEX-6600/M, FLEX-6400/M and FLEX-6300 do not support the loop option.

RF Gain adjusts the preamps of the FLEX-6000. The FLEX-6700 has two stages of hardware preamps which allow a total of six Preamp settings in 10dB steps (-10, 0, +10, +20, +30, +40). The FLEX-6500 has one hardware preamp and 3 preamp settings while the FLEX-6300 has one hardware preamp and 2 preamp settings. In most scenarios, the preamp should be left in the default setting for optimal operation. In a few rare situations (e.g. extremely low RF noise floor, use of a low gain receive antenna), you may get an improvement in signal to noise ratio by turning the preamp up. Even rarer, if you have extremely strong signals, you may decrease the preamp setting to keep from overloading the radio’s RF front end.

The Display menu button on the Panadapter menu exposes the display controls. A horizontal line separates Panadapter controls (top) from Waterfall controls (bottom).

The FPS slider controls the Frames Per Second that the Frequency Line is drawn at. Lowering the FPS control has several effects:
• It lowers the rate at which both the Panadapter and the Waterfall are updated
• It lowers the network bandwidth of data sent from the radio to the client (important in situations where you may have limited bandwidth)
• As the rate of update is lowered, the extra data not displayed is averaged and so the variance of the data is lowered, making both the Panadapter and the Waterfall smoother

If you prefer a faster updating display, but a more averaged or smoother one, adjust the FPS setting for the update speed you prefer and then raise the AVG (averaging) control. The AVG control increases the number of frames that are averaged, lowering the variance and smoothing the display.

The Fill control adjusts the amount of shading that is applied to the portion of the spectrum display below the signal line.

The final Panadapter control, Weighted Average, emphasizes signals that are increasing in amplitude over ones that are declining. This tends to continue to show locations where signals have been and show a more precise view of their full amplitude when they first appear.

Below the line at the center of the control are the Waterfall controls.

The Gain, Black and Auto controls work together to adjust how different signal levels are displayed in the Waterfall. The Black control sets the level below which all pixels will render as black. In other words, it sets the level at which signals are no longer of interest. The Auto control will automatically set the black level to just below the noise as band conditions, preamplifier changes or antenna changes alter the noise floor. To enable auto-black, click the Auto button so that it is blue.

The Gain control adjusts how rapidly the Waterfall will advance through the color spectrum for minimal changes in signal level. Adjusting gain low gives the Waterfall a broader dynamic range but lessens its ability to show small variations signals. Raising the gain lowers the dynamic range but provides more detail in the variances in smaller signals’ magnitudes.

The DAX menu button will expose the DAX IQ controls.

The DAX IQ Channel drop-down menu allows the user to select the DAX IQ channel (1-4) that will stream the IQ from the Panadapter.

41.5.4 Horizontal Zoom

The FLEX-6500, FLEX-6600(M) and FLEX-6700 Panadapters support a display range of a few KHz to a maximum of 14 MHz. The FLEX-6300 and FLEX-6400M Panadapters support a display range of a few KHz to a maximum of 7 MHz. There are four methods for adjusting the zoom of the Panadapter.

• The first is by use of the plus and minus buttons located in the bottom left corner of the Panadapter. Zooming out (-) will double the bandwidth presented in the Panadapter while
zooming in (+) will cut the bandwidth in half. The frequency at the center of the Panadapter will remain the same after clicking a zoom button.

- The second method is a click and drag method using the horizontal axis for more precise zooming. The click and drag method will zoom in by dragging to the right and vice-versa. With this method, the frequency at the point where your mouse was located at the click event will remain stationary in the Panadapter.
- The third is the “zoom to band” method. Above the plus and minus buttons located in the lower left corner of the Panadapter display, you will see the B control as shown in the image above. Clicking this control changes the zoom level so that the entire band that contains the Active Slice Receiver is displayed on the Panadapter. Clicking the control again returns the Panadapter zoom to its previous level. This function can be mapped to a FlexControl button. See section 17, Using the FlexControl Interface.
- The fourth is the “zoom to segment” method. Above the plus and minus buttons located in the lower left corner of the Panadapter display, you will see the S control as shown in the image above. Clicking this control changes the zoom level so that the segment of the band that contains the Active Slice Receiver is displayed on the Panadapter. Clicking the control again returns the Panadapter zoom to its previous level.

When zooming out with a FLEX-6000 radio there are certain points where the size of the data used to create the display on the screen will need to be doubled. As this occurs there will be more noise considered while processing the display which will cause a noticeable increase in the noise floor. The reverse occurs when zooming in on a Panadapter. After zooming out to a certain point, the hardware will switch to wideband mode. When this occurs, any Panadapters that are affected by this change will display **Wide** in the top right corner to indicate that it is in wideband mode. When in Wideband the radio will open the Bandpass Filters as wide as they can go for any Panadapters or Slice Receivers that are using that Antenna.
41.5.5 Vertical Zoom

Each Panadapter will allow you to adjust the maximum and minimum amplitude displayed. Clicking the up or down arrows displayed in the top right corner of the Panadapter will increase or decrease respectively the maximum amplitude displayed in 10 dB increments. You may also adjust the minimum amplitude by clicking and dragging the vertical axis. This will effectively adjust where the noise floor is positioned within the Panadapter.

41.5.6 Panning Method

Each Panadapter can perform a pan function to adjust the frequency range that is viewed. Clicking and dragging within the Panadapter grid will reorient the frequencies being viewed on the Panadapter in the direction that your mouse is moving. By moving your mouse to the right, you will display lower frequencies and vice-versa.
41.5.7 Waterfall Time Machine

SmartSDR keeps a copy of the last several minutes of the information that appeared in the waterfall. This information can be displayed by clicking in the time scale at the right edge of the waterfall, which changes the display to look like the image shown below. The UTC time at which the information was recorded is shown in right margin of the display. The stored waterfall information can be browsed by clicking in the time scale and dragging the display up and down.

While the stored information is being displayed, SmartSDR continues to record the live waterfall and add it to the top of the stored information. Depending on the amount of information stored, the oldest information at the bottom may be lost.

Return to the live waterfall by clicking on the **LIVE** button at the top right of the waterfall.

![Waterfall Time Machine](image)

41.5.8 Close/Maximize/Rearrange

Clicking the Close button `X` will remove the Panadapter and any Slices that are displayed in the Panadapter. Once this occurs you will not be able to use the Slice resources until they are recreated in a new Panadapter.

Clicking the Maximize button `maximize` will prioritize the arrangement of the Panadapter at the top of the display. Once a Panadapter is maximized a grey horizontal separator will appear between the maximized Panadapter and any other Panadapters that are open at the time. Clicking and dragging this horizontal separator will increase or decrease the available size for the maximized Panadapter. The non-maximized Panadapters will adjust to fill the remaining available space. To return to the standard view click the `maximize` next to the close button. You can have up to three maximized Panadapters at a time.
When multiple Panadapters are open, clicking on the main bar and dragging its position will rearrange the Panadapter windows.
41.6 SLICE RECEIVER

41.6.1 Definition

A Slice Receiver is a software resource which represents an independent, full performance, receiver. FLEX-6000 radios can have multiple Slices in operation at one time. A FLEX-6700 can operate up to eight Slices simultaneously while the FLEX-6600/M, FLEX-6500 and FLEX-6400/M can operate up to four and the FLEX-6300 can operate two. Each slice is designated by a letter indicator which increments with each additional slice.

41.6.2 Carrier Frequency

A slice consists of a center Carrier Frequency displayed by a solid yellow or red vertical bar. A yellow bar indicates the slice is “Active”, suggesting that this is the slice that you are currently manipulating. An active slice will have the focus of tuning devices such as the mouse wheel and the FlexControl.

41.6.3 Receive Filter

Surrounding the Carrier Frequency bar will be a blue Receive Filter bar which represents the filtered receive audio. The portion of spectrum that is highlighted by the Receive Filter bar will be output as audio.

The position of the Receive Filter relative to the Carrier Frequency will correspond to what mode that you are in. A Receive Filter to the right of the Carrier indicates an Upper Sideband mode. A Receive Filter to the left indicates a Lower Sideband mode. A Receive Filter that spans both the left and right of the Carrier will indicate a double sideband mode.
The Receive Filter width can be adjusted manually by hovering the mouse over the edge of the bar to get the <-> cursor. Clicking and dragging will expand or reduce the size of the filter.

41.6.4 Filter Control Widget

The Filter Control Widget is used to adjust the high cut and low cut of the Receive Filter. To initiate the Filter Control Widget, hover your mouse over the Carrier Frequency just above the horizontal axis Frequency bar. This will cause the Filter Control Widget to appear. Within the control there are three sections separated by dotted lines.

- If you hover your mouse over the left section a left Control arrow will appear. Clicking and dragging left or right will adjust the low cut of the filter and will display as the left side of the Receive Filter moving left or right. The measurement at the bottom displays the separation from the carrier frequency.
- The center section adjusts both the high cut and low cut of the filter simultaneously. Hovering over the center section will display a four-way arrow. Clicking and dragging up and down from within this section will decrease/increase the low cut while increasing the high cut of the filter effectively making the Receive Filter bar wider. Clicking and dragging left and right will move the Receive Filter bar left and right relative to the Carrier Frequency.
- If you hover your mouse over the right section a right Control arrow will appear. Clicking and dragging left or right will adjust the high cut of the filter and will display as the right side of the Receive Filter moving left or right. The measurement at the bottom displays the separation from the carrier frequency.
41.6.5 Slice Flag

The Slice Flag contains all the controls and information related to the individual slice. The Flag will follow the slice for easy access.

- **The Close Button** removes the slice from the Panadapter so it will no longer be accessible for receive or transmit audio.
- **The Lock Slice button** locks and unlocks slice tuning. When blue slice tuning is disabled. This feature is useful to prevent accidental tuning.
- **The Quick Record button** records the receive or transmit audio of the Slice Receiver. When a file has been recorded, the quick play button changes from Grey to Green. Pressing the quick play button plays back the recorded audio. When the radio is in transmit mode, the recorded audio will be played through the transmitter.

- **Receive Antenna drop-down** is the far left blue drop-down. It allows for easy control over which antenna is being used for the receive audio. Changing the antenna on the Slice will change the antenna on the Panadapter menu and any other Slices within the Panadapter.

- **Transmit Antenna drop-down** is the red drop-down to the right of the receive antenna drop-down. It allows for easy control over which antenna is being used for the transmit audio. This selection is unique to the slice and changing it will not affect the Panadapter or other Slices.
- **To the right of the transmit antenna drop-down** is the Filter Bandwidth Annunciator. This displays the current bandwidth of the Receive Filter in KHz measurement.

- **The Split button** adds a slice receiver to the system and configures the pair for split operation. The new slice receiver is set to a higher frequency than the original slice receiver, with the difference in frequency determined by the mode of the original slice. The TX indicator is set in the new slice, regardless of what slice in the system may have held it prior to pressing the Split button. Clicking the illuminated Split button removes the added slice receiver.

- **The Transmit Button** enables Transmit (TX) for the slice. When transmit is enabled on the slice the button will highlight red. You can move the transmit capabilities between Slices by clicking the Transmit Button on another slice.
• When clicked, the slice Indicator will collapse the Slice Flag for an unobstructed view of the Panadapter. This is commonly used when a Panadapter has a small width and height dimension. When collapsed, you will see the Letter Indicator, a smaller TX button and the tuned frequency.

• Below the Antenna Drop-down Menus there are three DSP (Digital Signal Processing) annunciators. When illuminated in blue it is indicating that the corresponding function is enabled. NR = Noise Reduction, ANF = Automatic Notch Filter.

• The QSK indicator shows when the radio is in a configuration that supports QSK operation. When illuminated in blue, QSK is possible.

• The Frequency Display consumes the largest portion of the Slice Flag. It represents the frequency of the Carrier of the individual slice. Clicking on this display will enable manual keyboard input of the desired frequency.

• The S-Meter shows the power within the Receive Filter as measured in S-Units (6 dB per S-Unit). A sliding white marker shows the recent peak value on the scale. An S-Unit digital readout is shown to the right. Clicking on the digital meter changes it to a dBm meter.
41.6.6 Slice Menus

In this section of the Slice Flag are a series of menus for adjusting the slice settings. Greyed out menus indicate menus that are not yet implemented.

- Clicking on the Slice Audio menu button will expose the slice specific audio controls. Right clicking on the Slice Audio menu button offers a shortcut for muting audio without having to enter the menu. The Slice Audio Menu includes a Mute button and volume slider to adjust the audio level of the slice. A Left balance button and slider to adjust the balance between left and right channels for headsets or speakers. Clicking on the L and R buttons jumps the selection to the next nearest spot between far left, center, and far right. Automatic Gain Control (AGC) drop-down menu allows the user to select Fast, Medium, Slow and Off AGC settings. Finally, the slider to the right of the AGC drop-down controls AGC Threshold.

- The Digital Signal Processing (DSP) Menu contains Wideband Noise Blanker (WNB) On/Off and slider, Noise Reduction (NR) On/Off and slider, and Automatic Notch Filter (ANF) On/Off and slider. When these controls are enabled, they will illuminate the annunciators on the Slice Flag in blue. When the slice is in CW mode the ANF button and slider will switch to an APF button and slider. Clicking on the APF button will enable the Audio Peaking Filter. The slider will adjust the Audio Peaking Filter bandwidth. This function can be useful when trying to copy weak CW signals.

When operating a FLEX-6600/M or FLEX-6700 an additional control will appear to initiate Diversity Reception. This will overlap two synchronized receivers on the same frequency which will operate on two different antennas for simple diversity reception. The slaved slice will have a Slice flag with reduced functionality. To hear the reception enhancement achieved using the diversity feature, you must listen using stereo headphones. Using stereo speakers can result in phasing nulls due to the lack of audio isolation between the left and right audio channels.
• The Mode Menu button displays the mode that is currently selected. Inside the menu there is a mode drop-down menu and three quick-select modes. To change the quick-select modes to a different mode, use a right click to expose a drop-down menu of available modes. Beneath the mode select buttons are the mode specific Filter Presets.

• The X/RIT Menu has controls for RIT and XIT. You can enable RIT or XIT by clicking the corresponding button. When enabled the button will turn blue. Modify the offset by clicking the right or left arrows or by typing in the text box. Click the 0 button to clear the offset. You can also control RIT and XIT on the FlexControl using the default settings by clicking the AUX1 button to enable RIT and AUX3 for XIT. Double click the tuning knob to zero out the RIT/XIT. Double click the corresponding AUX button to disable RIT/XIT, and zero it out.

• When RIT/XIT is set to something other than 0 the slice’s transmit filter bandwidth will be displayed on the Panadapter as a red bar. The bar is located behind the receive filter and will often overlap as shown below. Also, when RIT is adjusted a red dotted line will appear to show the original location of your receiver to where your slice will return upon zeroing out RIT.
• In the DAX menu, there is a selection for your DAX Audio Channel.

41.7 SMARTSDR RADIO CONTROL PANEL

The SmartSDR Radio Control panel contains the controls and metering required for optimal FLEX-6000 RF transmission. The SmartSDR Radio Control Panel consists of five sub panels described below.

To display the Radio Control Panel, click on the Radio Control Panel icon in the lower left corner of the SmartSDR application window. Clicking the icon again will remove the Radio Control Panel.

To open or close a subpanel click on the corresponding indicator at the top of the Radio Control Panel. When the button is illuminated in blue the subpanel is open and grey when closed.

The entire SmartSDR Radio Control panel can be popped out of the SmartSDR main screen and positioned anywhere on the PC display by clicking on the outward facing arrow in the top right corner of the panel. The screen location for this panel is remembered when SmartSDR is closed and restored when restarted.

You can return the Radio Control panel to the main screen by clicking on the inward facing arrow when the screen is popped out.
41.7.1 RF Power / ATU Control Panel

- **RF Power bar meter**: This meter is an indication of the peak RF power being transmitted.
- **SWR bar meter**: While transmitting, the SWR meter will measure the ratio of peak voltage on the minimum amplitude of voltage of standing wave, or VSWR. This is an indication of the radiated RF power efficiency. The radio software automatically folds back transmitter power so that the power reflected by the antenna does not exceed 25 watts. This feature protects the Power Amplifier but should not be relied upon when operating with a mismatched antenna.
- **RF Power slider control**: Moving the slider control to the right increases the RF power output. A value of 0 will not produce any RF output. The scale, from 0 – 100 approximates RF output wattage. If the Max Power in the Radio Setup->Transmit tab has been set for a value lower than 100, the slider will not progress beyond that limit.
- **Tune Pwr Slider**: The Tune Pwr (Power) slider control determines the power output level when TUNE is enabled. Moving the slider to the right increases the RF power output. A value of 0 will not produce any RF output. The scale, from 0 – 100 approximates RF output wattage.
- **Transmit Profile Drop-down**: This drop-down allows the user to quickly toggle between different Transmit profiles that have previously been created.
- **TUNE button**: Clicking this button will cause the transmitter to output a sinusoidal tone at low wattage (10 watts by default) for running external automatic antenna tuners and amplifiers. While TUNE is enabled, the output wattage can be adjusted using the RF Power slider control. When the TUNE button is the last to be pressed, the space bar can be used to toggle the TUNE state.
- **MOX button**: Clicking this button will key the transmitter. Clicking the MOX button while enabled will turn off or unkey the transmitter. When the MOX button is the last to be pressed, the space bar can be used to toggle the MOX state.
- **ATU button**: Clicking this button will initiate a tuning sequence by the internal Antenna Tuning Unit (ATU). If successful, the button will stay illuminated and the Success message will be displayed in the ATU Tune Operation Indicator. If the tuning operation fails to find a better impedance match, the ATU button will turn off, and either the Success or Byp message will appear in the ATU Tune Operation Indicator.
- **MEM button**: When illuminated, this button turns on the ATU memories.
- **ATU Tune Operation Indicator**: This annunciator display will indicate the result of an ATU tuning operation, where the possible outcomes are Success, Byp and Mem.
41.7.2 CW Transmit Control Panel

- **ALC bar meter**: This meter is an indication of the analog ALC hardware input levels provided by external power amplifiers. If there is ALC being displayed, the external power amplifier is notifying the exciter (FLEX-6000) to reduce the drive level.

 NOTE: When operating on Phone mode, if hardware ALC is indicated, the default RF Power and SWR meters will be momentarily hidden and the ALC meter displayed indicating a positive ALC condition exists.

- **Delay Slider**: Moving Delay slider control the slider control to the right increases the time delay in milliseconds (ms) between the end of a keying element and when the radio transitions from transmit to receive. This effectively controls the QSK characteristics of the radio, where a value of 0ms is full break. Increasing this value will allow different degrees of QSK (semi break), such as listening between letters or words while sending.

- **Speed slider**: Moving the slider control to the right increases keyer’s word per minute (WPM) setting. Moving the slider control to the left decreases keyer’s WPM setting.

- **Sidetone Button**: Enables or disables the CW Sidetone.

- **Sidetone Slider**: Adjusts the volume (or amplitude) of the CW note. Moving the slider control to the right increases the volume. Moving the slider control to the left decreases the volume.

- **Sidetone Pan Slider**: Moving the Sidetone Pan Slider will adjust the sidetone from left to right channel audio.

- **Breakin button** (ON by default): Clicking on this button will enable or turn on the transmitter by a key or paddle closure rather than using PTT.

- **Iambic button** (ON by default): Clicking on this button will enable the iambic keyer. Disable the iambic keyer if using a straight key.

- **Pitch increment / decrement control**: Clicking on the < or > buttons will decrease or increase the CW pitch frequency (tone) in 10 Hz increments.
41.7.3 Phone Transmit Control Panel

- **Level bar meter:** This meter shows the real-time audio input level in dB from the selected audio input. A peak level of approximately -10 dB is the optimal target for fully modulating the radio. Never exceed 0 dB.

- **Compression bar meter:** This meter shows the real-time level of compression being applied to the input signal when the speech processor (PROC) is enabled.

- **Audio Input drop down** (default MIC): Clicking on the drop-down box will display and allow for the selection of the primary audio input source. The audio input options are MIC (front panel 8-pin Foster connector), BAL (XLR balanced input) or LINE (TRS line level balanced audio input), ACCY (rear panel accessory connector and PC (uses the default Windows recording sound device). The audio inputs XLR and LINE are only available on the FLEX-6500 and FLEX-6700.

- **Audio Input Gain slider control** (to the left of the Audio Input drop down): Moving the slider control to the right increases the amount of transmitter audio gain and is shown by the Level bar meter. Moving the slider control to the left decreases the audio input gain.

- **ACC button:** Clicking this button will enable audio input and output on the ACC connector on the rear of the FLEX-6000 at the same time as a different primary audio source.

- **DAX Button:** Clicking the DAX button will enable audio input from the Digital Audio eXchange (DAX) Transmit channel. See section 35.1.6, DAX TX Channel and Microphone Interaction for more information on the coordination of DAX and microphones.

- **Processor (PROC) button:** Clicking on this button will enable the W9GR Controlled Envelope Single Sideband (CESSB) DSP algorithm resulting in additional talk power. The speech processor may be on or off and has three different settings when on. In the NOR or normal setting, the processor provides minimal additional gain and simply prevents audio peaks from clipping or producing power greater than the set level. In the DX setting, some compression is provided to the audio to increase the overall sideband envelope which results in a stronger signal that may be more readily heard at a distance. The DX+ setting adds even more compression increasing your talk power or “punch” without incurring significant audio distortion. DX+ is most effective if you increase the low-cut TX filter to between 200-400 Hz to concentrate your talk power in the audio frequency range that has the greatest intelligibility. This feature is available only in SSB, AM and FM modes.

- **MON button:** Clicking this button will enable the audio input monitor while transmitting, allowing the operator to hear the audio signal being sent to the transmitter in real time. With multiFLEX, this also allows the operator to hear another operator using the same radio when...
they are transmitting. The monitor audio in this case is mixed with the receive audio when Full Duplex (FDX) is enabled.

- **MON Slider**: Moving the slider control to the right increases the monitor volume of the transmit audio. Moving the slider to the left decreases the monitor volume.

41.7.4 Voice Mode Panel

- **Carrier Slider**: adjusts the AM Carrier Level that is used by the radio. Sliding the control to the right will increase the carrier level while sliding to the left will decrease the level.
- **Voice-Operated Transmit (VOX) button**: When the VOX is on, the sound of your voice will automatically switch the transceiver into the transmit mode. When enabled the VOX button will illuminate blue.
- **VOX Level Slider**: controls the audio level at which transmit is engaged when dragging the control to the right and decrease when dragging to the left.
- **Delay slider**: adjusts the delay between the end of the voice to when the radio switches back to receive mode. Sliding the control to the right will increase the delay while sliding to the left will decrease the delay.
- **Downward Expander (DEXP)**: A downward expander variably attenuates the mic gain by a certain percentage below a gain threshold setting rather than gating it on and off. This results in filtering out background noise without the abrupt on/off or chattering of a noise gate. The effect of a downward expander is to increase the *apparent* dynamic range of the system by decreasing the gain during the relatively quiet times thereby moving the apparent noise floor downward.
- **TX Low Cut and High cut**: allows the user to set the low-end cutoff and the high-end cutoff of the transmit bandwidth. SmartSDR varies the sharpness, and therefore the latency, of the TX filter so that the lowest latency filter is used that is consistent with the **TX Low Cut** value. As the **Low-Cut** value approaches zero, sharper but higher latency filters are used to assure that no signal is emitted outside of the set bandwidth.
41.7.5 Active Receiver Panel

The Active Receiver Panel mirrors the controls of the active receiver. For a list of the controls and their function see the Slice Flag Section of this manual. The tune step control is the only control that does not also reside on the Slice Flag. You can adjust the size of your tune step by clicking the right or left arrows. A custom tune step size can be entered into the display field and enabled by pressing the <Enter> key. This will alter the step size of each click of the mouse wheel and FlexControl. It will also change the snap tune function for drag tuning and click tuning. When a slice is moved, it will automatically snap to the nearest round number at the chosen step size. This information is remembered on a per-slice basis.

41.7.6 Equalizer Panel

The Equalizer Panel allows the user to adjust the receive and transmit equalization for the radio. Toggle between Receive RX and Transmit TX by clicking on the corresponding button. The ON will enable (Illuminated Blue) or disable (Grey) the equalizer. The eight sliders will adjust the corresponding channel listed at the top of the panel. The slider allows for adjustments +/- 10 dB. Small modifications are recommended with cuts preferred over gain.
41.7.7 Power Genius XL Panel

When a Power Genius XL linear amplifier is connected to the radio, the Power Genius XL subpanel is available in the Radio Control panel. The subpanel shows three meters:

- **Forward Power**: The output power of the amplifier, in watts, measured at the active output terminal.
- **SWR**: The standing wave ratio, calculated by the amplifier from the forward and reverse power values. Note that the smallest value reported by this meter is 1.2:1.
- **Temp**: The output power transistor heatsink temperature, in degrees Celsius.
CWX is a keyboard entry method for CW operation. The user types a message into the blue text bubble to be sent by the radio. There are two methods of sending messages “Live” and “Standard”

- **Live mode** of operation is enabled when the Live button is highlighted in Red. While in live mode, text will be transmitted as the user types into the text bubble.
- In **Standard mode**, the text will not be transmitted until the user hits the “Send” button or presses the “Enter” key.

As text is transmitted the font color will change from black to white indicating that the transmission has occurred. The user can stop transmission at any point by pressing the “Escape” key on the keyboard or tapping your paddle or key.

After a message has been sent the user can right click on the sent message to bring up a context menu that allows the user to resend the message or clear the history of the conversation.

CWX also supports several prosigns that can be entered in the CWX text bubble.

To insert Prosing BT use =
To insert Prosing AR use +
To insert Prosing KN use (
To insert Prosing BK use &
To insert Prosing SK use $
The user can quickly control the transmit speed by clicking the up down arrows next to the speed control or directly typing into the text box.

The CWX panel can be popped out of the main SmartSDR window by clicking on the small outward facing arrow at the top right of the CWX panel. The panel can be sized and positioned anywhere on the PC display. Click on the inward facing arrow to pop the panel back into the SmartSDR main window.

41.8.1 CWX Setup Panel

Clicking the “Setup” button will reveal the Setup Panel which contains a delay control.

The “Delay” control adjusts how long after the end of a transmission until the radio will return to receive mode. This is measured in milliseconds. For QSK operation the Delay should be set to a low value while a high delay setting will keep the radio in transmit (keyed) between characters or words.

The Hot Key messages can be set by typing directly into the text boxes next to the F1 – F12 buttons. Once the message is set the user can press the corresponding F key on the keyboard or clicking the F button on the CWX Setup panel to automatically send the message. A Hot Key message can also be set from the CWX Text Bubble by pressing Ctrl+F1 – F12 after text has been entered.

CWX hot key messages are stored as part of Global profiles when the profile is saved. If a Global profile is loaded and there are no CWX hot key memories stored, the profile will not overwrite the current CWX hot key memories.
42 ERROR AND STATUS MESSAGES

Various error and status messages regarding the operational state you your radio may be displayed to inform you of conditions that require attention. The following section describes these messages. If any of these errors occur frequently, immediately contact FlexRadio Support by submitting a HelpDesk support ticket for assistance.

42.1 THERMAL OVER TEMPERATURE

If the temperature of the FPGA exceeds 120°C a fatal error message will be displayed, and radio will become unresponsive, requiring a reboot of the radio to recover. An FPGA over temperature condition can be due to high ambient operating temperatures or insufficient cooling by the FPGA cooling fan.

42.2 REVERSE RF POWER DETECTED

When a large amount of RF power is detected coming into the receiver, the receiver will automatically be disconnected, and the transmitter will be unkeyed. Review your radio setup.

42.3 IMPORT CONFIG FAILED

This message will appear if a profile configuration import has failed. If a configuration import fails multiple times, it may mean that the .ssdr_cfg file is corrupted.

42.4 INTERLOCK IS PREVENTING TRANSMISSION

This message means that there is a certain interlock condition that is preventing transmission. Details on this interlock condition can be found near the bottom left corner of SmartSDR.

42.5 TRANSMIT SLICE HAS NOT BEEN SELECTED

A transmit slice must be selected for the radio to transmit. To select a transmit slice, press the TX button on the Slice flag.

42.6 MAX POWER SET TOO LOW FOR ATU

This message indicates the Max Power setting for the radio is set too low for proper ATU operation. Refer to section 39.6 to increase this value.
43 TROUBLESHOOTING TIPS

If you encounter problems running SmartSDR for Windows, please use the following troubleshooting tips. If these tips do not solve the problem, please submit a HelpDesk support ticket for assistance from FlexRadio Systems.

43.1 FLEX-6000 DOES NOT SHOW UP IN THE RADIO CHOOSER

If the FLEX-6000 does not show up in the Radio Chooser, the most probable fault is network related. There are several network components that can be at fault.

43.1.1 Physical Layer Issues

After connecting your FLEX-6000 to a network router, an Ethernet switch or directly to your PC, check to make sure the FLEX-6000 is properly connected at the network physical layer.

Looking at the back of the FLEX-6000 at the Ethernet connection, below the connector on the left is the link state LED. It should be illuminated Yellow when the radio is powered on. If not, you do not have a physical layer connection and you should check or try the following:

- Make sure the Ethernet cable is plugged all the way in on both ends. A click should be heard when it is seated completely.
- Make sure the network router, PC or Ethernet switch is powered on before powering up the FLEX-6000.
- Most network routers and Ethernet switches will have their own link state LEDs associated with the port the FLEX-6000 is connected. Check to make sure the link state LED for the port connected to the FLEX-6000 is illuminated. Please refer to your network hardware manual for additional information
- Power cycle the FLEX-6000 to re-initialize the Ethernet port.

43.1.2 Firewalls Preventing Network Access from the FLEX-6000

The FLEX-6000 broadcasts a network discovery packet (message) that is received by SmartSDR for Windows. SmartSDR for Windows uses this information to populate the Radio Chooser. Therefore, if the FLEX-6000 is not displayed in the Radio Chooser or after connecting to a FLEX-6000 there is no spectrum displayed, one reason may be that a software firewall on your PC is preventing access. The SmartSDR for Windows Installer automatically modifies the Windows firewall to allow the FLEX-6000 discovery packet and other network traffic to pass properly but does not modify third-party firewalls. A third-party firewall will most likely block access to the FLEX-6000. You may not be aware that secondary PC level firewalls are installed on your PC, so if you experience connectivity problems, this is the first thing to check.

Additionally, you may have a firewall running on a network router, which is referred to as a “hardware” firewall. It too can be improperly configured and may prevent network access between the FLEX-6000 and SmartSDR for Windows.

In these cases, the action to resolve this condition is to modify the third-party firewall software to allow access from any host on your local network to SmartSDR for Windows by allowing all TCP and UDP port access to SmartSDR for Windows.
If the installed third-party firewall is redundant, it may be disabled at your discretion. Please contact your firewall vendor for information regarding disabling or modifying the firewall for FLEX-6000 access.

43.1.3 MAC Address Filtering

Some hardware firewall / router / Wireless access point products have a feature that restricts access to the network based on the connected device’s media access control (MAC) address. If this feature has been enabled, failure to add the FLEX-6000 to the permitted MAC address access control list will prevent the FLEX-6000 from showing up in the SmartSDR for Windows Radio Chooser control panel.

The MAC address of the FLEX-6000 can be determined from the Firewall’s device list.

For hardware-based firewalls, resetting it to factory defaults will usually resolve the misconfiguration that is preventing network access between the FLEX-6000 and SmartSDR for Windows.

43.2 DAX NOT BEHAVING AS EXPECTED

If a DAX channel is not behaving as expected, hover the mouse cursor over the channel button in the DAX Control Panel to view the diagnostic tooltip for the channel. If DAX is not working correctly, you may stop the DAX Control Panel and then restart it.

43.3 RADIO WILL NOT BOOT, OR SMARTSDR-WIN WILL NOT COMPLETELY LOAD

If you get into a situation where the radio will not boot or the SmartSDR client will not load properly, please open a HelpDesk ticket to resolve this problem. Alternatively, you can reset the Persistence database by doing a Factory Reset. Before doing this procedure, it is recommended to export your current settings, if possible, using the Import/Export menu in the SmartSDR-Win client. See section 40 for the procedure.
43.4 FLEX-6000 FAILS TO UPGRADE TO A NEW VERSION OF FIRMWARE

If the FLEX-6000 fails to upgrade to a newer version of firmware, usually indicated by the power LED being illuminated purple for more than 5 minutes after starting the upgrade, this indicates that the initial step of transferring the new firmware to the radio is not working properly. If your radio was working properly with a previous version of SmartSDR, this may indicate that a program or software package on your PC is preventing the transfer of the new firmware to the radio.

Internet Security suites from manufacturers such as, but not limited to Norton, AVG, or McAfee can interfere with the SmartSDR firmware update process and the continued proper operation of the radio. If you experience the behavior described above and you have an Internet Security suite installed, disable it completely before performing SmartSDR software updates.

43.5 FLEX-6000 NOT PERFORMING WELL AFTER AN UPGRADE TO A NEW VERSION OF FIRMWARE

If you observe unexpected behavior or your radio is not performing well immediately after an upgrade to a new version of SmartSDR, it is possible that not all the internal processors rebooted properly during the upgrade process. If this is the case, the first troubleshooting step is to “cold” boot the radio by turning the radio off using the power button. If the radio will not shut down, press and hold the power button until the radio turns off. Then remove all DC power from the radio for 10-15 seconds by unplugging the DC power cable. Replace the DC power cable and turn the radio back on. This will ensure a complete restart of all internal processors.

43.6 RF SPECTRUM NOT DISPLAYED PROPERLY AFTER SELECTING A FLEX-6000 OR AUDIO STUTTERING

After a FLEX-6000 has been selected, a default Panadapter is displayed showing active RF spectrum. If no spectrum is displayed, the display is not updating properly, or remote audio is stuttering, there are several possibilities that could be causing the failure.

Low bandwidth connection between the FLEX-6000 and the PC running SmartSDR for Windows – If the PC running SmartSDR for Windows is connected to the FLEX-6000 via a wireless network connection, there is a possibility that a combination of low data streaming throughput and packet loss can result in a spectrum display that momentarily freezes or will not be displayed at all. If you experience this behavior, connect the FLEX-6000 directly to the PC via the Ethernet cable and reboot the radio when the PC is powered on. If the direct connect method resolves the problem, then the wireless network is not sufficient for connecting to the FLEX-6000.

Panadapter resource not available – If a Panadapter resource is not available in the radio, it is possible that the resource has been orphaned by an abnormal close of SmartSDR for Windows. In this case, power cycling the radio will free the locked Panadapter resource.

If connecting via SmartLink – The network path from the radio to the client may have trouble supporting larger packets (for the Panadapter and Waterfall). If this is the case, the MTU may be adjusted down from the industry standard 1500 until the display begins to work. See section 39.4 for more information.
43.7 AMBER FRONT PANEL LIGHT STUCK ON

If the LED on the front panel of the radio stays amber after powering down the radio, the radio has been configured to hold power on a GPS device. This configuration can exist even if no GPS device is present. This situation can be corrected by uninstalling the GPS using the Uninstall button on the GPS tab in Radio Setup. See section 39.4 for details.

43.8 I PURCHASED A LICENSE, BUT IT DOESN’T SHOW UP IN THE RADIO.

If you purchased or are entitled to a SmartSDR license, but you continue to see the “License Required” message, this issue cannot be resolved by reinstalling any software.

A common cause of this problem is isolation of the radio from the Internet. The radio must be able to contact the FlexRadio server through the Internet to find and install the license. The SmartSDR Windows should have a message to this effect as shown in the screenshot below.

This step is done by the radio’s firmware, not by the SmartSDR software running in a computer or in Maestro. The most common reason for the radio being isolated from the Internet is connecting the radio directly to the computer running SmartSDR with an ethernet wire. This configuration creates a “link-local” connection between the computer and the radio, which works fine for everyday use by SmartSDR, but it does not support Internet communication for the radio. The radio will not be able to connect to the FlexRadio server and install the license.

The ideal solution to this problem is to connect the radio to the network. See this Helpdesk Article for more information on how to do this.

Another solution is to disconnect the radio from the computer and reconnect the radio’s ethernet cable directly to the local area network (LAN) router. Turn the radio on, let it run until the power LED settles on solid green, turn it off, and return the radio to its original location and wiring. The license
should be installed. This solution provides temporary internet access for the radio and will not support SmartLink operation, but it should solve the license issue.

If attaching the radio directly to the LAN is not a practical solution, and if the computer is connected to the Internet through a second network interface (usually a Wi-Fi connection to the LAN) another solution is to bridge the two network interfaces together in the computer so that the radio becomes part of the LAN. Instructions for doing this can be found at this HelpDesk Article. After making the changes described in the article and rebooting the computer and the radio, the radio should find and install the license within a few minutes.

If these suggestions don’t solve the problem, open a Helpdesk support ticket.

43.9 SMARTLINK TROUBLESHOOTING

43.9.1 Radio not shown in the radio chooser

Here are some things to consider:

- Is the radio powered up?
- Does the radio have an Internet connection that is functioning?
- Do you have a functioning Internet connection at the remote location?

Did you log in to SmartLink at the remote location with the same account that you used to register your radio?

43.9.2 My radio shows up in the list, but when I try to connect, it doesn’t work.

If trying to connect via SmartLink: The first step in diagnosing a remote connection problem is to run the test included in the SmartLink Setup -> Network Settings screen. See section 9.2.3, Test the Radio in SmartLink. If the test passes (green), this verifies the connection between the SmartLink server and the radio. Further testing may be necessary to verify the client’s connection to the radio and may be dependent on the client’s network.

If not using SmartLink: If the Radio and the client are on different network subnets, the client will likely be able to see the broadcast radio discovery packets, and thus the radio will show up on the radio selection windows. However, the connection will fail due to not being able to route the TCP connection to the radio. The Radio IP address should be compared to the Client IP address. If one is 169.254.x.x (link local) and the other is something like 192.168.x.x, 172.x.x.x or 10.x.x.x), then this is likely the problem. In general, the beginning of the IP address should start the same way. The solution is to get the Radio and the Client onto the same network. See the following helpdesk article for more help on this: https://helpdesk.flexradio.com/hc/en-us/articles/202118558-How-to-Connect-your-FLEX-6000-to-a-LAN.

43.9.3 Running the Network Settings Test, I do not get a green response.

A yellow test result means that a remote connection might work depending on the configuration of the network at the remote end. Remote connections may work from some locations and not others. A red test result means that the connection will not work with the current configuration on the radio.
network. Hover the mouse cursor over the red result indicator to open a window containing details about the test failure. These details may help you to understand how to correct the problem. Take note of the details in case you need to open a Help Desk support ticket, as described at the end of this section.

To avoid connection issues and obtain a good test result (green), enable UPnP (Universal Plug n Play) on your router if it is supported or use the Manual Port Forwarding option. See the following section, 43.9.4.

43.9.4 My router doesn’t support UPnP. How can I setup my radio to reliably connect to remote clients?

For a reliable connection without UPnP you will need to use Manual Port Forwarding. To use Manual Port Forwarding, you will need to pick one TCP port number (e.g. 4994) and one UDP port number (e.g. 4993) for SmartLink to use. Referring to section 9.2.2, Register the Radio in SmartLink, go to the Network Settings screen. Select Manual Port Forwarding then enter the port numbers you have chosen in the TCP and UDP Port fields. Click the Save button. The remainder of this procedure is done to the configuration settings of your router. Details for setting up port forwarding on a wide variety of routers is beyond the scope of this document, but this document, https://helpdesk.flexradio.com/hc/en-us/articles/115003365503-What-is-Port-Forwarding-and-How-do-you-do-it, should provide a good starting point. In addition to port forwarding, your radio should be assigned a Static DHCP address by the router to avoid occasional breaks in the SmartLink connection caused by changes to the radio’s IP address.

43.9.5 When I use public Wi-Fi, sometimes my Panadapter hangs or my audio has gaps in it. How do I fix this?

As a network application, SmartLink can only perform as well as the networks to which it is connected. This means that even if your radio’s Internet connection is good, connecting to it from a marginal network can impact your performance. Use the Network Health indicator on the SmartSDR main screen to learn if the network is the problem. As an aside, testing with 3G and LTE cell phone connection hotspots has fared well.
44 LEGAL NOTICE

©2013 - 2019 FlexRadio Systems. All rights reserved. FlexRadio Systems®, SmartSDR™, and related trademarks, names, and logos are the property of FlexRadio Systems and are registered and/or used in the U.S. and countries around the world.

All other trademarks are the property of their respective owners.

This documentation including all documentation incorporated by reference herein such as documentation provided or made available at support.flexradio.com/downloads is provided or made accessible "AS IS" and "AS AVAILABLE" and without condition, endorsement, guarantee, representation, or warranty of any kind by FlexRadio Systems and FlexRadio assumes no responsibility for any typographical, technical, or other inaccuracies, errors, or omissions in this documentation. In order to protect FlexRadio proprietary and confidential information and/or trade secrets, this documentation may describe some aspects of FlexRadio technology in generalized terms. FlexRadio reserves the right to periodically change information that is contained in this documentation; however, FlexRadio makes no commitment to provide any such changes, updates, enhancements, or other additions to this documentation to you in a timely manner or at all.

This documentation might contain references to third-party sources of information, hardware or software, products or services including components and content such as content protected by copyright and/or third-party web sites (collectively the "Third Party Products and Services"). FlexRadio does not control, and is not responsible for, any Third Party Products and Services including, without limitation the content, accuracy, copyright compliance, compatibility, performance, trustworthiness, legality, decency, links, or any other aspect of Third Party Products and Services. The inclusion of a reference to Third Party Products and Services in this documentation does not imply endorsement by FlexRadio Systems of the Third Party Products and Services or the third party in any way.

EXCEPT TO THE EXTENT SPECIFICALLY PROHIBITED BY APPLICABLE LAW IN YOUR JURISDICTION, ALL CONDITIONS, ENDORSEMENTS, GUARANTEES, REPRESENTATIONS, OR WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY CONDITIONS, ENDORSEMENTS, GUARANTEES, REPRESENTATIONS OR WARRANTIES OF DURABILITY, FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, MERCHANTABILITY QUALITY, NON-INFRINGEMENT, SATISFACTORY QUALITY, OR TITLE, OR ARISING FROM A STATUTE OR CUSTOM OR A COURSE OF DEALING OR USAGE OF TRADE, OR RELATED TO THE DOCUMENTATION OR ITS USE, OR PERFORMANCE OR NON-PERFORMANCE OF ANY SOFTWARE, HARDWARE, SERVICE, OR ANY THIRD PARTY PRODUCTS AND SERVICES REFERENCED HEREIN, ARE HEREBY EXCLUDED. YOU MAY ALSO HAVE OTHER RIGHTS THAT VARY BY STATE OR PROVINCE. SOME JURISDICTIONS MAY NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES AND CONDITIONS. TO THE EXTENT PERMITTED BY LAW, ANY IMPLIED WARRANTIES OR CONDITIONS RELATING TO THE DOCUMENTATION TO THE EXTENT THEY CANNOT BE EXCLUDED AS SET OUT ABOVE, BUT CAN BE LIMITED, ARE HEREBY LIMITED TO NINETY (90) DAYS FROM THE DATE YOU FIRST ACQUIRED THE DOCUMENTATION OR THE ITEM THAT IS THE SUBJECT OF THE CLAIM.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN YOUR JURISDICTION, IN NO EVENT SHALL FLEXRADIO SYSTEMS BE LIABLE FOR ANY TYPE OF DAMAGES RELATED TO THIS DOCUMENTATION OR ITS USE, OR PERFORMANCE OR NON-PERFORMANCE OF ANY SOFTWARE, HARDWARE, SERVICE, OR ANY THIRD PARTY PRODUCTS AND SERVICES REFERENCED HEREIN INCLUDING WITHOUT LIMITATION ANY OF THE FOLLOWING DAMAGES: DIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR AGGRAVATED DAMAGES, DAMAGES FOR
LOSS OF PROFITS OR REVENUES, FAILURE TO REALIZE ANY EXPECTED SAVINGS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, LOSS OF BUSINESS OPPORTUNITY, OR CORRUPTION OR LOSS OF DATA, FAILURES TO TRANSMIT OR RECEIVE ANY DATA, PROBLEMS ASSOCIATED WITH ANY APPLICATIONS USED IN CONJUNCTION WITH FLEXRADIO SYSTEMS PRODUCTS OR SERVICES, DOWNTIME COSTS, LOSS OF THE USE OF FLEXRADIO PRODUCTS OR SERVICES OR ANY PORTION THEREOF OR OF ANY COST OF SUBSTITUTE GOODS, COSTS OF COVER, FACILITIES OR SERVICES, COST OF CAPITAL, OR OTHER SIMILAR PECUNIARY LOSSES, WHETHER OR NOT SUCH DAMAGES WERE FORESEEN OR UNFORESEEN, AND EVEN IF FLEXRADIO HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN YOUR JURISDICTION, FLEXRADIO SYSTEMS SHALL HAVE NO OTHER OBLIGATION, DUTY, OR LIABILITY WHATSOEVER IN CONTRACT, TORT, OR OTHERWISE TO YOU INCLUDING ANY LIABILITY FOR NEGLIGENCE OR STRICT LIABILITY.

THE LIMITATIONS, EXCLUSIONS, AND DISCLAIMERS HEREIN SHALL APPLY: (A) IRRESPECTIVE OF THE NATURE OF THE CAUSE OF ACTION, DEMAND, OR ACTION BY YOU INCLUDING BUT NOT LIMITED TO BREACH OF CONTRACT, NEGLIGENCE, TORT, STRICT LIABILITY OR ANY OTHER LEGAL THEORY AND SHALL SURVIVE A FUNDAMENTAL BREACH OR BREACHES OR THE FAILURE OF THE ESSENTIAL PURPOSE OF THIS AGREEMENT OR OF ANY REMEDY CONTAINED HEREIN; AND (B) TO FLEXRADIO AND ITS AFFILIATED COMPANIES, THEIR SUCCESSORS, ASSIGNS, AGENTS, AUTHORIZED FLEXRADIO DISTRIBUTORS AND THEIR RESPECTIVE DIRECTORS, EMPLOYEES, AND INDEPENDENT CONTRACTORS.

IN ADDITION TO THE LIMITATIONS AND EXCLUSIONS SET OUT ABOVE, IN NO EVENT SHALL ANY DIRECTOR, EMPLOYEE, AGENT, DISTRIBUTOR, SUPPLIER, INDEPENDENT CONTRACTOR OF FLEXRADIO SYSTEMS OR ANY AFFILIATES OF FLEXRADIO HAVE ANY LIABILITY ARISING FROM OR RELATED TO THE DOCUMENTATION.

Prior to subscribing for, installing, or using any Third Party Products and Services, it is your responsibility to ensure that the supplier has agreed to support all of their features. Installation or use of Third Party Products and Services with FlexRadio System’s products and services may require one or more patent, trademark, copyright, or other licenses in order to avoid infringement or violation of third party rights. You are solely responsible for determining whether to use Third Party Products and Services and if any third party licenses are required to do so. If required, you are responsible for acquiring them. You should not install or use Third Party Products and Services until all necessary licenses have been acquired. Any Third Party Products and Services that are provided with FlexRadio’s products and services are provided as a convenience to you and are provided “AS IS” with no express or implied conditions, endorsements, guarantees, representations, or warranties of any kind by FlexRadio and FlexRadio assumes no liability whatsoever, in relation thereto. Your use of Third Party Products and Services shall be governed by and subject to you agreeing to the terms of separate licenses and other agreements applicable thereto with third parties, except to the extent expressly covered by a license or other agreement with FlexRadio Systems.

The terms of use of any FlexRadio product or service are set out in a separate license or other agreement with FlexRadio applicable thereto. NOTHING IN THIS DOCUMENTATION IS INTENDED TO SUPERSEDE ANY EXPRESS WRITTEN AGREEMENTS OR WARRANTIES PROVIDED BY FLEXRADIO SYSTEMS FOR PORTIONS OF ANY FLEXRADIO PRODUCT OR SERVICE OTHER THAN THIS DOCUMENTATION.
45 COPYRIGHT INFORMATION

45.1 USER GUIDE COPYRIGHT

Copyright © 2013 - 2019 FlexRadio Systems
All rights reserved

Information in this document is subject to change without notice and does not represent a commitment on the behalf of FlexRadio Systems. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, for any purpose other than the purchaser's personal use, without the prior express written permission of FlexRadio Systems.

45.2 SOFTWARE COPYRIGHTS

Copyright © 2013-2019 FlexRadio Systems
All rights reserved

Republication or redistribution of FlexRadio Software content is prohibited without the prior written consent of FlexRadio Systems.

The software contains proprietary information of FlexRadio Systems; it is provided under a license agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse engineering of the software is prohibited.

Due to continued product development this information may change without notice. The information and intellectual property contained herein is confidential between FlexRadio Systems and the client and remains the exclusive property of FlexRadio Systems. If you find any problems in the documentation, please report them to us in writing. FlexRadio Systems does not warrant that this document is error-free.

Disclaimers

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior permission. Title to copyright in this software and any associated documentation will at all times remain with copyright holders.
46 SOFTWARE LICENCE AGREEMENTS

46.1 FLEXRADIO SOFTWARE LICENSE

SmartSDR™ for Windows End User License Agreement

Revised: July 14, 2017

This copy of SmartSDR for Windows ("the Software Product") and accompanying documentation is licensed and not sold. The Software Product is protected by copyright laws and treaties, as well as laws and treaties related to other forms of intellectual property. Bronze Bear Communications, Inc. or its subsidiaries, affiliates, and suppliers (collectively "FlexRadio Systems") own intellectual property rights in the Software Product. The Licensee's ("you" or "your") license to download, use, copy, or change the Software Product is subject to these rights and to all the terms and conditions of this End User License Agreement ("Agreement").

Acceptance

YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT BY SELECTING THE "ACCEPT" OPTION AND INSTALLING THE SOFTWARE PRODUCT OR BY DOWNLOADING, USING, OR COPYING THE SOFTWARE PRODUCT. YOU MUST AGREE TO ALL OF THE TERMS OF THIS AGREEMENT BEFORE YOU WILL BE ALLOWED TO INSTALL THE SOFTWARE PRODUCT. IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, YOU MUST NOT INSTALL, USE, OR COPY THE SOFTWARE PRODUCT.

License Grant

FlexRadio Systems grants to you, and you accept, a limited, non-exclusive and revocable license to use the Software Product, in machine-readable, object code form only. You shall only use the Software Product only as authorized in this Agreement. This Agreement does not convey to you any ownership rights or any other interest in the Software Product. This Agreement entitles you to install the Software Product on any number of computers for exclusive use with FlexRadio Systems' software defined radios ("SDRs"). In addition, you may make archival copies of the Software Product. The archival copies may be on a storage medium other than a hard drive, and may only be used for the reinstallation of the Software Product. This Agreement permits the installation or use of multiple copies of the Software Product, and the installation of the Software Product on more than one computer at any given time, on a system that allows shared use of applications, on a multi-user network, and on any configuration or system of computers that allows multiple users.

Term

This Agreement will become effective on the date you acquire the Software Product and will remain in force until terminated. You may terminate the license, at any time, by removing the Software Product from all of your computers and destroying the original Software Product. This License does not convey to you any ownership rights or any other interest in the Software Product. This Agreement entitles you to install the Software Product on any number of computers for exclusive use with FlexRadio Systems' software defined radios ("SDRs"). In addition, you may make archival copies of the Software Product. The archival copies may be on a storage medium other than a hard drive, and may only be used for the reinstallation of the Software Product. This Agreement permits the installation or use of multiple copies of the Software Product, and the installation of the Software Product on more than one computer at any given time, on a system that allows shared use of applications, on a multi-user network, and on any configuration or system of computers that allows multiple users.

Right to Install

You shall install the Software Product ONLY on computers that you own or on a computer which you have been given explicit verbal or written permission to install from the computer owner.

Restrictions on Transfer
Without first obtaining the express written consent of FlexRadio Systems, you may not assign your rights and obligations under this Agreement, or redistribute, encumber, sell, rent, lease, sublicense, or otherwise transfer your rights to the Software Product.

Restrictions on Use
You may not decompile, "reverse-engineer", disassemble, or otherwise attempt to derive the intellectual property or source code for the Software Product. The Software Product may only be used with unmodified FlexRadio Systems’ software defined radio (SDR) hardware. Use the Software Product with any other hardware or in conjunction with any other non-FlexRadio Systems software product that interfaces, communicates or emulates FlexRadio Systems’ SDR hardware constitutes a breach of the Agreement.

Restrictions on Alteration
You may not modify the Software Product or create any derivative work of the Software Product or its accompanying documentation. Derivative works include but are not limited to translations. You may not alter any files or libraries in any portion of the Software Product.

Legal Use
SmartLink, a software and service capability provided with the Software Product, includes the use of a Company computer network server ("Server") to broker a connection between an individual using SmartLink ("Operator") and a FlexRadio Systems receiver or transceiver ("Radio") in a location that may or may not be in a different legal jurisdiction from the Operator. SmartLink enables a network connection between the Operator and the Radio and provides the ability to receive and transmit signals, demodulated audio and complex intermediate frequency signals, spectrum plots and other spectrum information under control of the Operator. The legality of the use of SmartLink in any jurisdiction may vary by any number of factors including, but not limited to, the country where the Operator resides, the location or technology comprising the network, the location or technology used in the Server, the location of the Radio, and licenses or authorizations that may be required in one or more jurisdictions. You agree that your use of SmartLink will follow all applicable laws in the legal jurisdictions where you use the SmartLink and that you are responsible for all actions that occur in regards to your use of SmartLink. You agree to indemnify and hold harmless the Company, its officers, employees, agents, and affiliates, for any cause of action arising from your use of Software or SmartLink.

Limited Software Product Warranty
For a period of thirty (30) days from the date of shipment or from the date that you download the Software Product, as applicable, FlexRadio Systems warrants that when properly installed and used under normal conditions, the Software Product will perform substantially as advertised. FlexRadio Systems warrants that it will use commercially reasonable efforts to maintain a 99.9% uptime for the network-based aspects of SmartLink; provided, however, that FlexRadio's warranty does not apply to any downtime resulting from (i) a failure in a third party’s or your network infrastructure or (ii) scheduled updates, upgrades or maintenance.

Limited Storage Medium Warranty
For a period of ninety (90) days from the date of shipment or from the date that you download the Software Product, as applicable, FlexRadio Systems warrants that when properly installed and used under normal conditions, the storage medium on which the Software Product is shipped will be free of material defects in material and workmanship.

Disclaimer of Warranties and Limitation of Liability
UNLESS OTHERWISE EXPLICITLY AGREED TO IN WRITING BY FLEXRADIO SYSTEMS, FLEXRADIO SYSTEMS MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, IN FACT OR IN LAW, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE OTHER THAN AS SET FORTH IN THIS AGREEMENT OR IN THE LIMITED WARRANTY DOCUMENTS PROVIDED WITH THE SOFTWARE PRODUCT.

FlexRadio Systems makes no warranty that the Software Product will meet your requirements or operate under your specific conditions of use. FlexRadio Systems makes no warranty that operation of the Software Product will be secure, error free, or free from interruption. **YOU MUST DETERMINE WHETHER THE SOFTWARE PRODUCT SUFFICIENTLY MEETS YOUR REQUIREMENTS FOR SECURITY AND UNINTERRUPTABILITY. YOU BEAR SOLE RESPONSIBILITY AND ALL LIABILITY FOR ANY LOSS INCURRED DUE TO FAILURE OF THE SOFTWARE PRODUCT TO MEET YOUR REQUIREMENTS. FLEXRADIO SYSTEMS WILL NOT, UNDER ANY CIRCUMSTANCES, BE RESPONSIBLE OR LIABLE FOR THE LOSS OF DATA ON ANY COMPUTER, CONNECTED HARDWARE OR INFORMATION STORAGE DEVICE.**

UNDER NO CIRCUMSTANCES SHALL FLEXRADIO SYSTEMS, ITS DIRECTORS, OFFICERS, EMPLOYEES OR AGENTS BE LIABLE TO YOU OR ANY OTHER PARTY FOR INDIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL, PUNITIVE, OR EXEMPLARY DAMAGES OF ANY KIND (INCLUDING LOST REVENUES OR PROFITS OR LOSS OF BUSINESS) RESULTING FROM THIS AGREEMENT, OR FROM THE FURNISHING, PERFORMANCE, INSTALLATION, SUPPORT OR USE OF THE SOFTWARE PRODUCT, WHETHER DUE TO A BREACH OF CONTRACT, BREACH OF WARRANTY, OR THE NEGLIGENCE OF FLEXRADIO SYSTEMS OR ANY OTHER PARTY, EVEN IF FLEXRADIO SYSTEMS IS ADVISED BEFOREHAND OF THE POSSIBILITY OF SUCH DAMAGES. TO THE EXTENT THAT THE APPLICABLE JURISDICTION LIMITS FLEXRADIO SYSTEMS'S ABILITY TO DISCLAIMER ANY IMPLIED WARRANTIES, THIS DISCLAIMER SHALL BE EFFECTIVE TO THE MAXIMUM EXTENT PERMITTED.

Limitation of Remedies and Damages

Your remedy for a breach of this Agreement or of any warranty included in this Agreement is the correction or replacement of the Software Product. Selection of whether to correct or replace shall be solely at the discretion of FlexRadio Systems. FlexRadio Systems reserves the right to substitute a functionally equivalent copy of the Software Product as a replacement. If FlexRadio Systems is unable to provide a replacement or substitute Software Product or corrections to the Software Product, your sole alternate remedy shall be a refund of the purchase price for the Software Product exclusive of any costs for shipping and handling.

Any claim must be made within the applicable warranty period. All warranties cover only defects arising under normal use and do not include malfunctions or failure resulting from misuse, abuse, neglect, alteration, problems with electrical power, acts of nature, unusual temperatures or humidity, improper installation, or damage determined by FlexRadio Systems to have been caused by you. All limited warranties on the Software Product are granted only to you and are non-transferable. You agree to indemnify and hold FlexRadio Systems harmless from all claims, judgments, liabilities, expenses, or costs arising from your breach of this Agreement and/or acts or omissions.

Privacy: Password and User ID

Upon registration, the Software Product automatically communicates with the Company's servers on the internet. The Company will use any personally identifiable information (e.g., name, callsign, etc.) only for the purposes specified in its Privacy Policy, the terms of which are set forth below and incorporated herein by reference and, by your acceptance of this EULA, to which you agree to be bound.

Privacy Policy

Your privacy is important to FlexRadio Systems, and we have implemented policies designed to protect your privacy, whether you are accessing our Software via traditional computers (desktops, laptops) or via mobile devices (such as smartphones and tablets) or via our client-enabled products (Maestro, FLEX-6400M, or FLEX-6600M). The following explains our online information gathering practices and how that information is used by us.
Protection of Personal Information

We take appropriate precautions to protect any Personal Information that you submit to us. FlexRadio Systems uses industry standard measures to protect data that is stored on our SmartLink server and restricts access to such user information to those who are responsible to operate and maintain the SmartLink server.

Data and Privacy

When you use the Software Product, we collect your IP address and network information for the purpose of facilitating SmartLink connections. We may from time to time disclose data to third parties in the following circumstances: (1) to conform to legal requirements or to respond to a subpoena, search warrant or other legal process received by the Company seeking such information, or (2) to enforce the terms of the End User License Agreement to which you are bound as a condition to use of the Software or otherwise to protect our rights in the Software or the rights of other customers to enjoy the benefits of the Software or (3) to our legal team or to a party that purchases Company or any of its businesses. We do not furnish any Personal Information to any affiliated or unaffiliated third parties.

Financial

Payment for use of our Software is handled by recognized third party vendors. We do not collect or store any personal banking or credit card information.

Governing Law, Jurisdiction and Costs

This Agreement is governed by the laws of Texas, without regard to Texas's conflict or choice of law provisions. This Agreement shall not be governed by the United Nations Convention on Contracts for the International Sale of Goods, the application of which is expressly excluded. Any civil action or legal proceeding arising out of or relating to this Agreement shall be brought in the courts of record of the State of Texas in Travis County or the United States District Court, Western District of Texas, Austin Division. You and FlexRadio Systems consent to the jurisdiction of such court in any such civil action or legal proceeding and waive any objection to the laying of venue of any such civil action or legal proceeding in such court.

Severability

If any provision of this Agreement shall be held to be invalid or unenforceable by a court of competent jurisdiction, the remainder of this Agreement shall remain in full force and effect. To the extent any express or implied restrictions are not permitted by applicable laws, these express or implied restrictions shall remain in force and effect to the maximum extent permitted by such applicable laws.

Complete Agreement

This Agreement constitutes the entire agreement between you and FlexRadio Systems with respect to the use of the Software Product licensed hereunder and supersedes all prior or contemporaneous understandings regarding such subject matter. No amendment to or modification of this Agreement will be binding unless in writing and signed by FlexRadio Systems. Any translation of this Agreement is done for local requirements and in the event of a dispute between the English and any non-English versions, the English version of this Agreement shall govern.
46.2 GPL INFORMATION

Portions of the software contained within the FLEX-6000 Signature Series transceiver are covered under the GNU General Public License (GPL).

GNU GENERAL PUBLIC LICENSE

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Lesser General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification"). Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

 c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, does not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer to distribute corresponding source code. (These alternatives are allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found.

One line to give the program's name and an idea of what it does.

Copyright (C) yyyy name of author
This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than `show w' and `show c'; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at compilers) written by James Hacker.

Signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License.